You need to sign in or sign up before continuing.
beam_search_decode_op_test.cc 7.4 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/beam_search_decode_op.h"
#include "gtest/gtest.h"

using CPUPlace = paddle::platform::CPUPlace;
using LoD = paddle::framework::LoD;
using LoDTensor = paddle::framework::LoDTensor;
using LoDTensorArray = paddle::framework::LoDTensorArray;

template <typename T>
using BeamNode = paddle::operators::BeamNode<T>;
template <typename T>
using BeamSearchDecoder = paddle::operators::BeamSearchDecoder<T>;
template <typename T>
using Sentence = paddle::operators::Sentence<T>;
template <typename T>
using BeamNodeVector = paddle::operators::BeamNodeVector<T>;
template <typename T>
using SentenceVector = paddle::operators::SentenceVector<T>;

namespace paddle {
namespace test {

void GenerateExample(const std::vector<size_t>& level_0,
                     const std::vector<size_t>& level_1,
                     const std::vector<int>& data, LoDTensorArray* ids,
                     LoDTensorArray* scores) {
  PADDLE_ENFORCE_EQ(level_0.back(), level_1.size() - 1,
                    "source level is used to describe candidate set");
  PADDLE_ENFORCE_EQ(level_1.back(), data.size(),
                    "the lowest level is used to describe data"
                    ", so it's last element should be data length");

  CPUPlace place;

  LoD lod;
  lod.push_back(level_0);
  lod.push_back(level_1);

  // Ids
  LoDTensor tensor_id;
  tensor_id.set_lod(lod);
  tensor_id.Resize({static_cast<int64_t>(data.size())});
  // malloc memory
  int64_t* id_ptr = tensor_id.mutable_data<int64_t>(place);
  for (size_t i = 0; i < data.size(); ++i) {
    id_ptr[i] = static_cast<int64_t>(data.at(i));
  }

  // Scores
  LoDTensor tensor_score;
  tensor_score.set_lod(lod);
  tensor_score.Resize({static_cast<int64_t>(data.size())});
  // malloc memory
  float* score_ptr = tensor_score.mutable_data<float>(place);
  for (size_t i = 0; i < data.size(); ++i) {
    score_ptr[i] = static_cast<float>(data.at(i));
  }

  ids->push_back(tensor_id);
  scores->push_back(tensor_score);
}

}  // namespace test
}  // namespace paddle

TEST(BeamSearchDecodeOp, DeleteBeamNode) {
  auto* root = new BeamNode<float>(0, 0);
  auto* b1 = new BeamNode<float>(1, 1);
  auto* b2 = new BeamNode<float>(2, 2);
  auto* b3 = new BeamNode<float>(3, 3);

  b1->AppendTo(root);
  b2->AppendTo(root);
  b3->AppendTo(b1);

  delete b3;
  delete b2;
}

TEST(BeamSearchDecodeOp, MakeSentence) {
  auto* root = new BeamNode<float>(0, 0);
  auto* b1 = new BeamNode<float>(1, 1);
  auto* end = new BeamNode<float>(2, 2);
  b1->AppendTo(root);
  end->AppendTo(b1);

  BeamSearchDecoder<float> helper;
  Sentence<float> sentence = helper.MakeSentence(end);
  delete end;

  std::vector<int64_t> expect_ids = {0, 1, 2};
  ASSERT_EQ(sentence.word_ids, expect_ids);

  std::vector<float> expect_scores = {0, 1, 2};
  ASSERT_EQ(sentence.scores, expect_scores);
}

TEST(BeamSearchDecodeOp, PackTwoStepsFistStep) {
  CPUPlace place;

  LoDTensorArray ids;
  LoDTensorArray scores;

  paddle::test::GenerateExample(
      std::vector<size_t>{0, 2, 6}, std::vector<size_t>{0, 1, 2, 3, 4, 5, 6},
      std::vector<int>{1, 2, 3, 4, 5, 6}, &ids, &scores);

  std::vector<BeamNodeVector<float>> beamnode_vector_list;
  std::vector<SentenceVector<float>> sentence_vector_list(
      2, SentenceVector<float>());

  BeamSearchDecoder<float> helper;
  beamnode_vector_list = helper.PackTwoSteps(
      ids[0], scores[0], beamnode_vector_list, &sentence_vector_list);
  ASSERT_EQ(beamnode_vector_list.size(), 2UL);
  ASSERT_EQ(beamnode_vector_list[0].size(), 2UL);
  ASSERT_EQ(beamnode_vector_list[1].size(), 4UL);
}

TEST(BeamSearchDecodeOp, PackTwoSteps) {
  CPUPlace place;

  // first source has three prefix
  BeamNodeVector<float> source0_prefixes;
  source0_prefixes.push_back(
      std::unique_ptr<BeamNode<float>>(new BeamNode<float>(1, 1)));
  source0_prefixes.push_back(
      std::unique_ptr<BeamNode<float>>(new BeamNode<float>(0, 0)));
  source0_prefixes.push_back(
      std::unique_ptr<BeamNode<float>>(new BeamNode<float>(3, 3)));

  // second source has two prefix
  BeamNodeVector<float> source1_prefixes;
  source1_prefixes.push_back(
      std::unique_ptr<BeamNode<float>>(new BeamNode<float>(4, 4)));
  source1_prefixes.push_back(
      std::unique_ptr<BeamNode<float>>(new BeamNode<float>(5, 5)));

  std::vector<BeamNodeVector<float>> beamnode_vector_list;
  std::vector<SentenceVector<float>> sentence_vector_list(
      2, SentenceVector<float>());

  beamnode_vector_list.push_back(std::move(source0_prefixes));
  beamnode_vector_list.push_back(std::move(source1_prefixes));

  // generate data for one step
  LoDTensorArray ids;
  LoDTensorArray scores;

  paddle::test::GenerateExample(std::vector<size_t>{0, 3, 5},
                                std::vector<size_t>{0, 1, 1, 3, 4, 5},
                                std::vector<int>{0, 1, 2, 3, 4}, &ids, &scores);

  BeamSearchDecoder<float> helper1;
  beamnode_vector_list = helper1.PackTwoSteps(
      ids[0], scores[0], beamnode_vector_list, &sentence_vector_list);

  ASSERT_EQ(sentence_vector_list[0].size(), 1UL);
  ASSERT_EQ(sentence_vector_list[1].size(), 0UL);
  ASSERT_EQ(beamnode_vector_list[0].size(), 3UL);
  ASSERT_EQ(beamnode_vector_list[1].size(), 2UL);
}

TEST(BeamSearchDecodeOp, PackAllSteps) {
  CPUPlace place;

  // we will constuct a sample data with 3 steps and 2 source sentences
  LoDTensorArray ids;
  LoDTensorArray scores;

  paddle::test::GenerateExample(
      std::vector<size_t>{0, 3, 6}, std::vector<size_t>{0, 1, 2, 3, 4, 5, 6},
      std::vector<int>{1, 2, 3, 4, 5, 6}, &ids, &scores);
  paddle::test::GenerateExample(
      std::vector<size_t>{0, 3, 6}, std::vector<size_t>{0, 1, 1, 3, 5, 5, 6},
      std::vector<int>{0, 1, 2, 3, 4, 5}, &ids, &scores);
  paddle::test::GenerateExample(std::vector<size_t>{0, 3, 6},
                                std::vector<size_t>{0, 0, 1, 2, 3, 4, 5},
                                std::vector<int>{0, 1, 2, 3, 4}, &ids, &scores);

  ASSERT_EQ(ids.size(), 3UL);
  ASSERT_EQ(scores.size(), 3UL);

  BeamSearchDecoder<float> helper;

  LoDTensor id_tensor;
  LoDTensor score_tensor;
  helper.PackAllSteps(ids, scores, &id_tensor, &score_tensor);

  LoD lod = id_tensor.lod();
  std::vector<size_t> expect_source_lod = {0, 4, 8};
  EXPECT_EQ(lod[0], expect_source_lod);
  std::vector<size_t> expect_sentence_lod = {0, 1, 3, 6, 9, 10, 13, 16, 19};
  EXPECT_EQ(lod[1], expect_sentence_lod);
  // 2| 1, 0| 3, 1, 0| 3, 2, 1| 5| 4, 3, 2| 4, 4, 3| 6, 5, 4
  std::vector<int> expect_data = {2, 1, 0, 3, 1, 0, 3, 2, 1, 5,
                                  4, 3, 2, 4, 4, 3, 6, 5, 4};
  ASSERT_EQ(id_tensor.dims()[0], static_cast<int64_t>(expect_data.size()));
  for (size_t i = 0; i < expect_data.size(); ++i) {
    ASSERT_EQ(id_tensor.data<int64_t>()[i],
              static_cast<int64_t>(expect_data[i]));
  }
  for (int64_t i = 0; i < id_tensor.dims()[0]; ++i) {
    ASSERT_EQ(score_tensor.data<float>()[i],
              static_cast<float>(id_tensor.data<int64_t>()[i]));
  }
}