yolo_box_op.h 6.1 KB
Newer Older
D
dengkaipeng 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
D
dengkaipeng 已提交
16
#include "paddle/fluid/platform/hostdevice.h"
D
dengkaipeng 已提交
17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
D
dengkaipeng 已提交
24
HOSTDEVICE inline T sigmoid(T x) {
D
dengkaipeng 已提交
25 26 27 28
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
29
HOSTDEVICE inline void GetYoloBox(T* box, const T* x, const int* anchors, int i,
D
dengkaipeng 已提交
30 31
                                  int j, int an_idx, int grid_size,
                                  int input_size, int index, int stride,
32 33 34 35 36
                                  int img_height, int img_width, float scale,
                                  float bias) {
  box[0] = (i + sigmoid<T>(x[index]) * scale + bias) * img_width / grid_size;
  box[1] = (j + sigmoid<T>(x[index + stride]) * scale + bias) * img_height /
           grid_size;
D
dengkaipeng 已提交
37
  box[2] = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] * img_width /
D
dengkaipeng 已提交
38 39 40
           input_size;
  box[3] = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] *
           img_height / input_size;
D
dengkaipeng 已提交
41 42
}

D
dengkaipeng 已提交
43 44 45
HOSTDEVICE inline int GetEntryIndex(int batch, int an_idx, int hw_idx,
                                    int an_num, int an_stride, int stride,
                                    int entry) {
D
dengkaipeng 已提交
46 47 48 49
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
D
dengkaipeng 已提交
50
HOSTDEVICE inline void CalcDetectionBox(T* boxes, T* box, const int box_idx,
D
dengkaipeng 已提交
51
                                        const int img_height,
52
                                        const int img_width, bool clip_bbox) {
D
dengkaipeng 已提交
53 54 55 56
  boxes[box_idx] = box[0] - box[2] / 2;
  boxes[box_idx + 1] = box[1] - box[3] / 2;
  boxes[box_idx + 2] = box[0] + box[2] / 2;
  boxes[box_idx + 3] = box[1] + box[3] / 2;
D
dengkaipeng 已提交
57

58 59 60 61 62 63 64 65 66 67 68
  if (clip_bbox) {
    boxes[box_idx] = boxes[box_idx] > 0 ? boxes[box_idx] : static_cast<T>(0);
    boxes[box_idx + 1] =
        boxes[box_idx + 1] > 0 ? boxes[box_idx + 1] : static_cast<T>(0);
    boxes[box_idx + 2] = boxes[box_idx + 2] < img_width - 1
                             ? boxes[box_idx + 2]
                             : static_cast<T>(img_width - 1);
    boxes[box_idx + 3] = boxes[box_idx + 3] < img_height - 1
                             ? boxes[box_idx + 3]
                             : static_cast<T>(img_height - 1);
  }
D
dengkaipeng 已提交
69 70 71
}

template <typename T>
D
dengkaipeng 已提交
72 73 74 75
HOSTDEVICE inline void CalcLabelScore(T* scores, const T* input,
                                      const int label_idx, const int score_idx,
                                      const int class_num, const T conf,
                                      const int stride) {
D
dengkaipeng 已提交
76 77 78 79 80 81 82 83 84 85
  for (int i = 0; i < class_num; i++) {
    scores[score_idx + i] = conf * sigmoid<T>(input[label_idx + i * stride]);
  }
}

template <typename T>
class YoloBoxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
86
    auto* imgsize = ctx.Input<Tensor>("ImgSize");
D
dengkaipeng 已提交
87 88 89 90 91 92
    auto* boxes = ctx.Output<Tensor>("Boxes");
    auto* scores = ctx.Output<Tensor>("Scores");
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float conf_thresh = ctx.Attr<float>("conf_thresh");
    int downsample_ratio = ctx.Attr<int>("downsample_ratio");
93
    bool clip_bbox = ctx.Attr<bool>("clip_bbox");
94 95
    float scale = ctx.Attr<float>("scale_x_y");
    float bias = -0.5 * (scale - 1.);
D
dengkaipeng 已提交
96 97 98 99 100 101 102 103 104 105 106

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int box_num = boxes->dims()[1];
    const int an_num = anchors.size() / 2;
    int input_size = downsample_ratio * h;

    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

D
dengkaipeng 已提交
107 108 109 110
    Tensor anchors_;
    auto anchors_data =
        anchors_.mutable_data<int>({an_num * 2}, ctx.GetPlace());
    std::copy(anchors.begin(), anchors.end(), anchors_data);
D
dengkaipeng 已提交
111

D
dengkaipeng 已提交
112
    const T* input_data = input->data<T>();
113
    const int* imgsize_data = imgsize->data<int>();
D
dengkaipeng 已提交
114 115 116 117 118 119
    T* boxes_data = boxes->mutable_data<T>({n, box_num, 4}, ctx.GetPlace());
    memset(boxes_data, 0, boxes->numel() * sizeof(T));
    T* scores_data =
        scores->mutable_data<T>({n, box_num, class_num}, ctx.GetPlace());
    memset(scores_data, 0, scores->numel() * sizeof(T));

D
dengkaipeng 已提交
120
    T box[4];
D
dengkaipeng 已提交
121
    for (int i = 0; i < n; i++) {
122 123 124
      int img_height = imgsize_data[2 * i];
      int img_width = imgsize_data[2 * i + 1];

D
dengkaipeng 已提交
125 126 127 128 129 130 131 132 133 134 135 136
      for (int j = 0; j < an_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
            int obj_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 4);
            T conf = sigmoid<T>(input_data[obj_idx]);
            if (conf < conf_thresh) {
              continue;
            }

            int box_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 0);
D
dengkaipeng 已提交
137
            GetYoloBox<T>(box, input_data, anchors_data, l, k, j, h, input_size,
138
                          box_idx, stride, img_height, img_width, scale, bias);
D
dengkaipeng 已提交
139
            box_idx = (i * box_num + j * stride + k * w + l) * 4;
140 141
            CalcDetectionBox<T>(boxes_data, box, box_idx, img_height, img_width,
                                clip_bbox);
D
dengkaipeng 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

            int label_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 5);
            int score_idx = (i * box_num + j * stride + k * w + l) * class_num;
            CalcLabelScore<T>(scores_data, input_data, label_idx, score_idx,
                              class_num, conf, stride);
          }
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle