diagonal.h 4.2 KB
Newer Older
H
hong 已提交
1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
L
Li Fuchen 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
H
hong 已提交
16 17 18 19 20 21

#if defined(__NVCC__) || defined(__HIPCC__)
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#endif

L
Li Fuchen 已提交
22
#include <algorithm>
H
hong 已提交
23

L
Li Fuchen 已提交
24 25
#include "paddle/fluid/platform/for_range.h"

H
hong 已提交
26
namespace pten {
27 28
namespace funcs {

L
Li Fuchen 已提交
29
template <typename T>
30
struct DiagonalFunctor {
H
hong 已提交
31 32 33 34 35
  DiagonalFunctor(const T* input,
                  const int64_t* diag_stride,
                  const int64_t* ret_strides,
                  int64_t pos,
                  int64_t dim_size,
36
                  T* diag)
L
Li Fuchen 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
      : input_(input),
        diag_stride_(diag_stride),
        ret_strides_(ret_strides),
        pos_(pos),
        dim_size_(dim_size),
        diag_(diag) {}

  HOSTDEVICE void operator()(size_t idx) const {
    int64_t position = pos_;
    int64_t num = idx;
    for (int64_t i = 0; i < dim_size_; i++) {
      position += num / diag_stride_[i] * ret_strides_[i];
      num = num % diag_stride_[i];
    }
    diag_[idx] = input_[position];
  }

  const T* input_;
  const int64_t* diag_stride_;
  const int64_t* ret_strides_;
  int64_t pos_;
  int64_t dim_size_;
  T* diag_;
};

H
hong 已提交
62 63 64 65 66 67
template <typename T, typename DeviceContext>
DenseTensor Diagonal(const DeviceContext& context,
                     const DenseTensor* input,
                     int64_t offset,
                     int64_t dim1,
                     int64_t dim2) {
L
Li Fuchen 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  auto* input_data = input->data<T>();
  auto input_dims = input->dims();
  auto input_stride = framework::stride(input_dims);
  auto dim1_ = dim1 < 0 ? input_dims.size() + dim1 : dim1;
  auto dim2_ = dim2 < 0 ? input_dims.size() + dim2 : dim2;
  auto len1 = input_dims[std::min(dim1_, dim2_)];
  auto len2 = input_dims[std::max(dim1_, dim2_)];
  auto stride1 = input_stride[std::min(dim1_, dim2_)];
  auto stride2 = input_stride[std::max(dim1_, dim2_)];

  int offset_stride = 0;
  if (offset >= 0) {
    offset_stride = stride2;
    len2 -= offset;
  } else {
    offset_stride = stride1;
    len1 += offset;
  }
  int diag_size = len2 < len1 ? len2 : len1;

  if (diag_size > 0) {
    auto ret_strides = vectorize(input_stride);
    auto ret_dims = vectorize(input_dims);
    ret_strides.erase(ret_strides.begin() + std::max(dim1_, dim2_));
    ret_strides.erase(ret_strides.begin() + std::min(dim1_, dim2_));
    ret_dims.erase(ret_dims.begin() + std::max(dim1_, dim2_));
    ret_dims.erase(ret_dims.begin() + std::min(dim1_, dim2_));
    if (ret_strides.empty()) {
      ret_strides.push_back(1);
      ret_dims.push_back(1);
    }
    ret_strides.push_back(stride1 + stride2);
    ret_dims.push_back(diag_size);
H
hong 已提交
101
    DenseTensor diag;
L
Li Fuchen 已提交
102 103 104 105 106 107
    framework::DDim diag_dims = framework::make_ddim(ret_dims);
    auto dig_stride = framework::stride(diag_dims);
    auto diag_data = diag.mutable_data<T>(diag_dims, context.GetPlace());

    int64_t pos = std::abs(offset) * offset_stride;
    int64_t dim_size = ret_strides.size();
108
#if defined(__NVCC__) || defined(__HIPCC__)
L
Li Fuchen 已提交
109 110 111 112 113 114 115 116 117
    thrust::device_vector<int64_t> diag_vec(vectorize(dig_stride));
    const int64_t* diag_arr = thrust::raw_pointer_cast(diag_vec.data());
    thrust::device_vector<int64_t> ret_vec(ret_strides);
    const int64_t* ret_arr = thrust::raw_pointer_cast(ret_vec.data());
#else
    auto* diag_arr = dig_stride.Get();
    const auto* ret_arr = ret_strides.data();
#endif

H
hong 已提交
118 119 120 121
    // auto& dev_ctx = context.template device_context<DeviceContext>();
    paddle::platform::ForRange<DeviceContext> for_range(context, diag.numel());
    DiagonalFunctor<T> functor(
        input_data, diag_arr, ret_arr, pos, dim_size, diag_data);
L
Li Fuchen 已提交
122 123 124 125 126 127 128
    for_range(functor);
    return diag;
  } else {
    return {};
  }
}

129
}  // namespace funcs
H
hong 已提交
130
}  // namespace pten