function_spec.py 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import numpy as np
import collections
18

19 20 21 22 23 24
import paddle
from paddle.fluid import core
from paddle.fluid.dygraph import layers
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers.utils import pack_sequence_as
from paddle.fluid.dygraph.base import switch_to_static_graph
W
WeiXin 已提交
25
from paddle.fluid.dygraph.io import TranslatedLayer
26

27 28 29 30 31 32 33 34
from . import logging_utils
from .utils import (
    parse_arg_and_kwargs,
    parse_varargs_name,
    type_name,
    func_to_source_code,
)

35

36
class FunctionSpec:
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    """
    Wrapper class for a function for class method.
    """

    def __init__(self, function, input_spec=None):
        self._dygraph_function = function
        if input_spec is None:
            self._input_spec = None
            self._flat_input_spec = None
        else:
            self._input_spec = self._verify_input_spec(input_spec)
            self._flat_input_spec = flatten(self._input_spec)

        # parse full argument names list.
        self._arg_names, self._default_kwargs = parse_arg_and_kwargs(function)
W
WeiXin 已提交
52 53
        # parse *args
        self.varargs_name = parse_varargs_name(function)
54 55 56
        if self.varargs_name is not None and isinstance(
            function.__self__, TranslatedLayer
        ):
W
WeiXin 已提交
57
            self._arg_names += function.__self__._input_args_names
58 59 60 61 62

    def unified_args_and_kwargs(self, args, kwargs):
        """
        Moves kwargs with default value into arguments list to keep `args` contain the same length
        value as function definition.
63 64 65 66

        For example:

            Given function definition: `def foo(x, a=1, b=2)`,
67 68 69 70 71 72 73 74 75 76 77 78
            when calling it by `foo(23)`, the args is `[23]`, kwargs is `{a=1, b=2}`.
            In this function, it will return args with `[23, 1, 2]`, kwargs with `{}`

        Args:
            args(tuple): tuple of input arguments value of decorated function.
            kwargs(dict): dict of input keyword arguments value of decorated function.

        Return:
            New arguments tuple containing default kwargs value.
        """
        if len(self._arg_names) < len(args):
            error_msg = "The decorated function `{}` requires {} arguments: {}, but received {} with {}.".format(
79 80 81 82 83 84
                self._dygraph_function.__name__,
                len(self._arg_names),
                self._arg_names,
                len(args),
                args,
            )
85 86 87 88 89 90 91 92
            if args and inspect.isclass(args[0]):
                error_msg += "\n\tMaybe the function has more than one decorator, we don't support this for now."
                raise NotImplementedError(error_msg)
            else:
                raise ValueError(error_msg)

        args = list(args)

93
        for i in range(len(args), len(self._arg_names)):
94 95 96 97 98 99 100
            arg_name = self._arg_names[i]
            if arg_name in kwargs:
                args.append(kwargs[arg_name])
                del kwargs[arg_name]
            else:
                if arg_name not in self._default_kwargs:
                    raise ValueError(
101 102 103 104 105 106 107
                        "`{}()` requires `{}` arguments, but not found in input `args`: {} and `kwargs`: {}.".format(
                            self._dygraph_function.__name__,
                            arg_name,
                            args,
                            kwargs,
                        )
                    )
108 109 110 111
                args.append(self._default_kwargs[arg_name])

        return tuple(args), kwargs

112 113 114 115 116
    def _replace_value_with_input_spec(self, args):
        args_with_spec = []
        for idx, input_var in enumerate(flatten(args)):
            if isinstance(input_var, np.ndarray):
                input_var = paddle.static.InputSpec.from_numpy(input_var)
117
                _set_spec_stop_gradient(input_var, True)
118
            elif isinstance(input_var, (core.VarBase, core.eager.Tensor)):
119
                stop_gradient = input_var.stop_gradient
120
                input_var = paddle.static.InputSpec.from_tensor(input_var)
121
                _set_spec_stop_gradient(input_var, stop_gradient)
122 123 124 125 126 127

            args_with_spec.append(input_var)

        args_with_spec = pack_sequence_as(args, args_with_spec)
        return args_with_spec

128 129 130
    def args_to_input_spec(self, args, kwargs):
        """
        Converts input arguments into InputSpec.
131

132 133 134 135 136 137 138 139
        1. If specific input_spec, use them to construct feed layers.
        2. If input_spec is None, consider all Tensor and Numpy.ndarray as feed layers

        Args:
            args(tuple): tuple of input arguments value of function containing default kwargs value.
            kwargs(dict): kwargs arguments received by **kwargs.

        Return:
140
            Same nest structure with args and kwargs by replacing value with InputSpec.
141 142
        """

143 144
        args_with_spec = []
        kwargs_with_spec = []
145 146 147 148 149
        if self._input_spec is not None:
            # Note: Because the value type and length of `kwargs` is uncertain.
            # So we don't support to deal this case while specificing `input_spec` currently.
            if kwargs:
                raise ValueError(
150 151 152 153
                    "{} got unexpected keyword arguments: {}. Cannot trace the function when `input_spec` is specificed.".format(
                        self._dygraph_function.__name__, kwargs
                    )
                )
154 155 156 157 158 159

            # Note: The length of `input_spec` can be greater than `args`,
            # because `args` may contains non-tensor value merged form `kwargs`
            # after `unified_args_and_kwargs`.
            if len(args) < len(self._input_spec):
                raise ValueError(
160 161 162 163
                    "Requires len(arguments) >= len(input_spec), but received len(args):{} < len(InputSpec): {}".format(
                        len(args), len(self._input_spec)
                    )
                )
164 165

            # replace argument with corresponding InputSpec.
166
            args_with_spec = convert_to_input_spec(args, self._input_spec)
167
        else:
168 169
            args_with_spec = self._replace_value_with_input_spec(args)
            kwargs_with_spec = self._replace_value_with_input_spec(kwargs)
170

171 172
        # If without specificing name in input_spec, add default name
        # according to argument name from decorated function.
173 174 175
        args_with_spec = replace_spec_empty_name(
            self._arg_names, args_with_spec
        )
176

177
        return args_with_spec, kwargs_with_spec
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

    @switch_to_static_graph
    def to_static_inputs_with_spec(self, input_with_spec, main_program):
        """
        Constructs feed layer by inputs with InputSpec information for main program.

        Args:
            input_with_spec(tuple): input arguments by replacing argument with InputSpec.
            main_program(Program): main program for inserting feed layer.
        """
        flat_input_spec = flatten(input_with_spec)

        inputs = []
        block = main_program.global_block()
        for i, var_spec in enumerate(flat_input_spec):
            if isinstance(var_spec, paddle.static.InputSpec):
194
                stop_gradient = getattr(var_spec, 'stop_gradient', False)
195 196 197 198 199 200
                feed_layer = block.create_var(
                    # TODO(Aurelius84): consider a more elegant way to name this
                    name=var_spec.name or "feed_%s" % i,
                    shape=var_spec.shape,
                    dtype=var_spec.dtype,
                    is_data=True,
201
                    need_check_feed=False,
202 203
                    stop_gradient=stop_gradient,
                )
204 205 206 207 208 209 210 211 212 213 214 215
            else:
                feed_layer = var_spec
            inputs.append(feed_layer)

        return pack_sequence_as(input_with_spec, inputs)

    def _verify_input_spec(self, input_spec):
        """
        Verifies the `input_spec` and its element type is valid.
        """
        if not isinstance(input_spec, (tuple, list)):
            raise TypeError(
216 217 218 219
                "The type(input_spec) should be one of (tuple, list), but received {}.".format(
                    type_name(input_spec)
                )
            )
220

221
        return tuple(input_spec)
222 223 224

    def __repr__(self):
        return "function: {}({}), input_spec: {}".format(
225 226 227 228
            self._dygraph_function.__name__,
            ','.join(self._arg_names),
            self._input_spec,
        )
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

    @property
    def dygraph_function(self):
        return self._dygraph_function

    @property
    def args_name(self):
        return self._arg_names

    @property
    def input_spec(self):
        return self._input_spec

    @property
    def flat_input_spec(self):
        return self._flat_input_spec

    @property
    def code(self):
        return func_to_source_code(self._dygraph_function)


def get_parameters(layer_instance, include_sublayer=True):
    """
    Returns parameters of decorated layers. If set `include_sublayer` True,
    the parameters created in sub layers will be added.
    """
    params = collections.OrderedDict()
    if layer_instance is not None:
        if isinstance(layer_instance, layers.Layer):
            if include_sublayer:
                params = layer_instance.parameters()
                names = [p.name for p in params]
                params = collections.OrderedDict(zip(names, params))
            else:
                params = layer_instance._parameters
        else:
            raise TypeError(
267 268 269 270
                "Type of `layer_instance` should be nn.Layer, but received {}".format(
                    type_name(layer_instance)
                )
            )
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

    return params


def get_buffers(layer_instance, include_sublayer=True):
    """
    Returns Variable buffers of decorated layers. If set `include_sublayer` True,
    the Variable buffers created in sub layers will be added.
    """
    buffers = collections.OrderedDict()
    if layer_instance is not None:
        if isinstance(layer_instance, layers.Layer):
            if include_sublayer:
                buffers = layer_instance.buffers()
                names = [buffer.name for buffer in buffers]
                buffers = collections.OrderedDict(zip(names, buffers))
            else:
                buffers = layer_instance._buffers
        else:
            raise TypeError(
291 292 293 294
                "Type of `layer_instance` should be nn.Layer, but received {}".format(
                    type_name(layer_instance)
                )
            )
295 296 297 298 299 300
    return buffers


def convert_to_input_spec(inputs, input_spec):
    """
    Replaces tensor in structured `inputs` by InputSpec in `input_spec`.
301

302 303
    Args:
        inputs(list|dict): nested structure list or dict.
304 305
        input_spec(list|dict): same nested structure list or dict as inputs.

306 307 308 309 310 311 312

    Return:
        Same structure with inputs by replacing the element with specified InputSpec.
    """

    def check_type_and_len(input, spec, check_length=False):
        if type(input) is not type(spec):
313 314 315 316 317
            raise TypeError(
                'type(input) should be {}, but received {}.'.format(
                    type(spec), type(input)
                )
            )
318 319
        if check_length and len(input) < len(spec):
            raise ValueError(
320 321 322 323
                'Requires len(inputs) >= len(input_spec), but received len(inputs):{} < len(input_spec):{}'.format(
                    len(inputs), len(input_spec)
                )
            )
324 325 326 327 328 329 330 331 332 333 334 335

    if isinstance(input_spec, (tuple, list)):
        input_with_spec = []
        check_type_and_len(inputs, input_spec, True)

        for i, spec in enumerate(input_spec):
            out_spec = convert_to_input_spec(inputs[i], spec)
            input_with_spec.append(out_spec)

        # Note: If the rest inputs contain tensor or numpy.ndarray
        # without specific InputSpec, raise warning.
        if len(inputs) > len(input_spec):
336
            for rest_input in inputs[len(input_spec) :]:
337
                if isinstance(rest_input, (core.VarBase, np.ndarray)):
338
                    logging_utils.warn(
339
                        "The inputs constain `{}` without specificing InputSpec, its shape and dtype will be treated immutable. "
340 341 342 343 344
                        "Please specific InputSpec information in `@to_static` if you expect them as mutable inputs.".format(
                            type_name(rest_input)
                        )
                    )
        input_with_spec.extend(inputs[len(input_spec) :])
345 346 347 348 349

        return input_with_spec
    elif isinstance(input_spec, dict):
        input_with_spec = {}
        check_type_and_len(inputs, input_spec, True)
350
        for name, input in inputs.items():
351
            if name in input_spec:
352
                input_with_spec[name] = convert_to_input_spec(
353 354
                    input, input_spec[name]
                )
355 356 357 358 359 360
            else:
                input_with_spec[name] = input
        return input_with_spec
    elif isinstance(input_spec, paddle.static.InputSpec):
        return input_spec
    else:
361 362
        # NOTE(Aurelius84): Support non-Tensor type as input spec info
        return input_spec
363 364 365 366 367 368 369 370 371 372 373 374 375 376


def replace_spec_empty_name(args_name, input_with_spec):
    """
    Adds default name according to argument name from decorated function
    if without specificing InputSpec.name

    The naming rule are as followed:
        1. If InputSpec.name is not None, do nothing.
        2. If each argument `x` corresponds to an InputSpec, using the argument name like `x`
        3. If the arguments `inputs` corresponds to a list(InputSpec), using name like `inputs_0`, `inputs_1`
        4. If the arguments `input_dic` corresponds to a dict(InputSpec), using key as name.

    For example:
377

378 379 380 381 382 383 384 385 386 387 388 389 390
        # case 1: foo(x, y)
        foo = to_static(foo, input_spec=[InputSpec([None, 10]), InputSpec([None])])
        print([in_var.name for in_var in foo.inputs])  # [x, y]

        # case 2: foo(inputs) where inputs is a list
        foo = to_static(foo, input_spec=[[InputSpec([None, 10]), InputSpec([None])]])
        print([in_var.name for in_var in foo.inputs])  # [inputs_0, inputs_1]

        # case 3: foo(inputs) where inputs is a dict
        foo = to_static(foo, input_spec=[{'x': InputSpec([None, 10]), 'y': InputSpec([None])}])
        print([in_var.name for in_var in foo.inputs])  # [x, y]
    """
    input_with_spec = list(input_with_spec)
391
    candidate_arg_names = args_name[: len(input_with_spec)]
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

    for i, arg_name in enumerate(candidate_arg_names):
        input_spec = input_with_spec[i]
        input_with_spec[i] = _replace_spec_name(arg_name, input_spec)

    return input_with_spec


def _replace_spec_name(name, input_spec):
    """
    Replaces InputSpec.name with given `name` while not specificing it.
    """
    if isinstance(input_spec, paddle.static.InputSpec):
        if input_spec.name is None:
            input_spec.name = name
        return input_spec
    elif isinstance(input_spec, (list, tuple)):
        processed_specs = []
        for i, spec in enumerate(input_spec):
            new_name = "{}_{}".format(name, i)
            processed_specs.append(_replace_spec_name(new_name, spec))
        return processed_specs
    elif isinstance(input_spec, dict):
        processed_specs = {}
416
        for key, spec in input_spec.items():
417 418 419 420
            processed_specs[key] = _replace_spec_name(key, spec)
        return processed_specs
    else:
        return input_spec
421 422 423 424 425 426 427 428 429


def _set_spec_stop_gradient(spec, stop_gradient):
    """
    Set new attribute ``stop_gradient`` for InputSpec to avoid generating redundant grad_op
    while append_backward.
    """
    assert isinstance(spec, paddle.static.InputSpec)
    spec.stop_gradient = stop_gradient
430 431 432 433 434 435 436 437 438 439 440 441


def _hash_spec_names(args_specs, kwargs_specs):
    """
    Generater hash spec with args/kwargs InputSpec names.
    Consider the following InputSpecs with same shape/dtype except for name:
      1. [InputSpec([3,3], 'float32', 'x'), InputSpec([3,3], 'float32', 'x')]
      2. [InputSpec([3,3], 'float32', 'x'), InputSpec([3,3], 'float32', 'y')]
    Under @to_static, we should generate two different program not just one, because
    the former has one input ('x'), but the latter has two input ('x', 'y').
    """
    spec_names = [
442 443
        spec.name
        for spec in flatten(args_specs)
444 445 446
        if isinstance(spec, paddle.static.InputSpec)
    ]
    spec_names += [
447 448
        spec.name
        for spec in flatten(kwargs_specs)
449 450 451 452 453 454 455 456 457 458 459 460 461 462
        if isinstance(spec, paddle.static.InputSpec)
    ]
    i, name_ids = 0, {}

    def to_idx(name):
        nonlocal i
        if name not in name_ids:
            name_ids[name] = i
            i += 1
        return name_ids[name]

    value = [to_idx(name) for name in spec_names]

    return tuple(value)