test_resnet_cinn.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import unittest

import numpy as np

import paddle
from paddle import fluid
from paddle.fluid import core
from paddle.vision.models import resnet50

SEED = 2020
base_lr = 0.001
momentum_rate = 0.9
l2_decay = 1e-4
batch_size = 2
epoch_num = 1

# In V100, 16G, CUDA 11.2, the results are as follows:
# DY2ST_CINN_GT = [
#     5.847336769104004,
#     8.336246490478516,
#     5.108744144439697,
#     8.316713333129883,
#     8.175262451171875,
#     7.590441703796387,
#     9.895681381225586,
#     8.196207046508789,
#     8.438933372497559,
#     10.305074691772461,


# The results in ci as as follows:
DY2ST_CINN_GT = [
    5.828789710998535,
    8.340764999389648,
    4.998944282531738,
    8.474305152893066,
    8.09157943725586,
    7.440057754516602,
    9.907357215881348,
    8.304681777954102,
    8.383116722106934,
    10.120304107666016,
]

if core.is_compiled_with_cuda():
    paddle.set_flags({'FLAGS_cudnn_deterministic': True})


def reader_decorator(reader):
    def __reader__():
        for item in reader():
            img = np.array(item[0]).astype('float32').reshape(3, 224, 224)
            label = np.array(item[1]).astype('int64').reshape(1)
            yield img, label

    return __reader__


J
JYChen 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
class TransedFlowerDataSet(paddle.io.Dataset):
    def __init__(self, flower_data, length):
        self.img = []
        self.label = []
        self.flower_data = flower_data()
        self._generate(length)

    def _generate(self, length):
        for i, data in enumerate(self.flower_data):
            if i >= length:
                break
            self.img.append(data[0])
            self.label.append(data[1])

    def __getitem__(self, idx):
        return self.img[idx], self.label[idx]

    def __len__(self):
        return len(self.img)


95 96 97 98
def optimizer_setting(parameter_list=None):
    optimizer = fluid.optimizer.Momentum(
        learning_rate=base_lr,
        momentum=momentum_rate,
99
        regularization=paddle.regularizer.L2Decay(l2_decay),
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        parameter_list=parameter_list,
    )

    return optimizer


def run(model, data_loader, optimizer, mode):
    if mode == 'train':
        model.train()
        end_step = 9
    elif mode == 'eval':
        model.eval()
        end_step = 1

    for epoch in range(epoch_num):
        total_acc1 = 0.0
        total_acc5 = 0.0
        total_sample = 0
        losses = []

        for batch_id, data in enumerate(data_loader()):
            start_time = time.time()
            img, label = data

            pred = model(img)
            avg_loss = paddle.nn.functional.cross_entropy(
                input=pred,
                label=label,
                soft_label=False,
                reduction='mean',
                use_softmax=True,
            )

            acc_top1 = paddle.static.accuracy(input=pred, label=label, k=1)
            acc_top5 = paddle.static.accuracy(input=pred, label=label, k=5)

            if mode == 'train':
                avg_loss.backward()
                optimizer.minimize(avg_loss)
                model.clear_gradients()

            total_acc1 += acc_top1
            total_acc5 += acc_top5
            total_sample += 1
            losses.append(avg_loss.numpy().item())

            end_time = time.time()
            print(
                "[%s]epoch %d | batch step %d, loss %0.8f, acc1 %0.3f, acc5 %0.3f, time %f"
                % (
                    mode,
                    epoch,
                    batch_id,
                    avg_loss,
                    total_acc1.numpy() / total_sample,
                    total_acc5.numpy() / total_sample,
                    end_time - start_time,
                )
            )
            if batch_id >= end_step:
                break
    print(losses)
    return losses


def train(to_static, enable_prim, enable_cinn):
    if core.is_compiled_with_cuda():
        paddle.set_device('gpu')
    else:
        paddle.set_device('cpu')
    np.random.seed(SEED)
    paddle.seed(SEED)
    paddle.framework.random._manual_program_seed(SEED)
    fluid.core._set_prim_all_enabled(enable_prim)

J
JYChen 已提交
175
    dataset = TransedFlowerDataSet(
176
        reader_decorator(paddle.dataset.flowers.train(use_xmap=False)),
J
JYChen 已提交
177 178 179 180
        batch_size * (10 + 1),
    )
    data_loader = paddle.io.DataLoader(
        dataset, batch_size=batch_size, drop_last=True
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    )

    resnet = resnet50(False)
    if to_static:
        build_strategy = paddle.static.BuildStrategy()
        if enable_cinn:
            build_strategy.build_cinn_pass = True
        resnet = paddle.jit.to_static(resnet, build_strategy=build_strategy)
    optimizer = optimizer_setting(parameter_list=resnet.parameters())

    train_losses = run(resnet, data_loader, optimizer, 'train')
    if to_static and enable_prim and enable_cinn:
        eval_losses = run(resnet, data_loader, optimizer, 'eval')
    return train_losses


class TestResnet(unittest.TestCase):
    @unittest.skipIf(
        not (paddle.is_compiled_with_cinn() and paddle.is_compiled_with_cuda()),
        "paddle is not compiled with CINN and CUDA",
    )
    def test_cinn(self):
        dy2st_cinn = train(to_static=True, enable_prim=False, enable_cinn=True)
        np.testing.assert_allclose(dy2st_cinn, DY2ST_CINN_GT, rtol=1e-5)


if __name__ == '__main__':
    unittest.main()