regularizer.py 14.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import logging
17

18
from . import framework
19
from .framework import in_dygraph_mode, _varbase_creator, device_guard
C
chengduoZH 已提交
20
from . import core
21

Y
yuyang18 已提交
22
__all__ = ['L1Decay', 'L2Decay', 'L1DecayRegularizer', 'L2DecayRegularizer']
23 24


25
def _create_regularization_of_grad(param, grad, regularization=None):
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    """ Create and add backward regularization Operators

    Function helper of append_regularization_ops.
    """
    # If no gradient or no regularization is specified,  then we don't need to do anything
    if grad is None or (param.regularizer is None and regularization is None):
        return grad
    regularization_term = None
    if param.regularizer is not None:
        # Add variable for regularization term in grad block
        regularization_term = param.regularizer(param, grad, grad.block)
    elif regularization is not None:
        regularization_term = regularization(param, grad, grad.block)

    assert regularization_term is not None

    new_grad = grad
    if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
        # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
        # the grad's type and name will be changed. But the gradient's name
        # is used in ParallelExecutor Reduce mode, so I add a flag for
        # the new_grad here.
        new_grad = grad.block.create_var(
            name=grad.name + core.kNewGradSuffix(),
            dtype=param.dtype,
            shape=param.shape,
            lod_level=param.lod_level,
            type=core.VarDesc.VarType.LOD_TENSOR)

    inputs = {"X": [grad, regularization_term]}
    outputs = {"Out": [new_grad]}
    if in_dygraph_mode():
58
        new_grad = core.ops.sum([grad, regularization_term])
59 60 61 62 63 64
    else:
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)

    return new_grad


65 66 67
def append_regularization_ops(parameters_and_grads,
                              regularization=None,
                              param_device_map=None):
68 69 70 71 72 73 74 75 76 77
    """Create and add backward regularization Operators

    Creates and adds backward regularization operators in the BlockDesc.
    This will add gradients of the regularizer function to the gradients
    of the parameters and return these modified gradients. This is the
    same as implementing weight decay in optimizers for regularization.

    Args:
        parameters_and_grads: A list of (parameters, gradients) pairs
                              that need to be regularized.
D
dzhwinter 已提交
78 79
        regularization: A global regularizer. If the parameter is not
                        set. It will be applied with regularizer.
80 81

    Returns:
82 83
        list[(Variable, Variable)]: list of (parameters, gradients) \
        pair with the regularized gradient
84 85 86 87 88

    Raises:
        Exception: Unknown regularization type
    """
    params_and_grads = []
89 90
    if in_dygraph_mode():
        for param, grad in parameters_and_grads:
91 92
            new_grad = _create_regularization_of_grad(param, grad,
                                                      regularization)
C
chengduo 已提交
93
            params_and_grads.append((param, new_grad))
94
    else:
95
        repeate_regularizer = False
96 97
        with framework.name_scope('regularization'):
            for param, grad in parameters_and_grads:
98 99
                device = param_device_map[
                    param.name] if param_device_map else None
100 101 102 103 104 105
                if not repeate_regularizer and param.regularizer is not None and regularization is not None:
                    repeate_regularizer = True
                    logging.info(
                        "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                        "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                        % regularization.__str__())
106 107 108 109 110
                with device_guard(device):
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = _create_regularization_of_grad(
                            param, grad, regularization)
                        params_and_grads.append((param, new_grad))
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    return params_and_grads


class WeightDecayRegularizer(object):
    """Base class for weight decay regularizers

    Defines the common interface of weight-decay regularizers.
    Weight-decay regularizers are added only during the backward
    pass for faster regularization. They add operations to the network
    that correspond to gradient of the regularization function.
    Users should not use this class directly, but need to use one
    of its implementations
    """

    def __init__(self):
        pass

C
chengduoZH 已提交
128
    def __call__(self, param, grad, block):
129 130 131 132
        """Add corresponding weight decay operations to the network
        """
        raise NotImplementedError()

F
fengjiayi 已提交
133 134 135 136 137
    def __str__(self):
        """Debug string
        """
        raise NotImplementedError()

138 139

class L2DecayRegularizer(WeightDecayRegularizer):
140 141
    """ 
    Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
142

143 144 145 146 147
    It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ). 
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in 
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has 
    higher priority than ``optimizer`` .
    
148
    In the implementation, the formula of L2 Weight Decay Regularization is as follows:
149 150 151 152 153 154

    .. math::

        L2WeightDecay = reg\_coeff * parameter

    Args:
155
        regularization_coeff(float, optional): regularization coeff. Default:0.0
156 157 158 159

    Examples:
        .. code-block:: python

160
            # Example1: set Regularizer in optimizer
161
            import paddle.fluid as fluid
162

163 164 165 166 167 168 169 170 171
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
172 173
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
174
                regularization=fluid.regularizer.L2Decay(
175
                    regularization_coeff=0.1))
176
            optimizer.minimize(avg_loss)
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200


            # Example2: set Regularizer both in ParamAttr and optimizer
            import paddle.fluid as fluid

            l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
            l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
            x = fluid.layers.uniform_random([3,4])
            
            # set L1 regularization in fluid.ParamAttr
            w_param = fluid.ParamAttr(regularizer=l1)
            hidden1 = fluid.layers.fc(x, 8, param_attr=w_param)  # fc_0.w_0(L1), fc_0.b_0
            hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param)   # fc_1.w_0(L1), fc_1.b_0
            predict = fluid.layers.fc(hidden2, 32)    # fc_3.w_0, fc_3.b_0
            avg_loss = fluid.layers.mean(predict)

            # set L2 regularization in optimizer
            optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
            optimizer.minimize(avg_loss)
            
            # it will Print Message:
            # Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already. 
            # So, the Regularization of Optimizer will not take effect for these parameters!

201 202 203 204 205 206 207
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L2DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
208
    def __call__(self, param, grad, block):
209 210 211 212 213 214 215 216 217 218 219 220 221 222
        """Add L2 weight decay ops to network

        Adds L2 weight decay ops.
        L2WeightDecay = reg_coeff * parameter

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
        assert isinstance(param, framework.Parameter)
        assert isinstance(block, framework.Block)
C
chengduoZH 已提交
223

224 225 226
        inputs = {"X": [param]}
        attrs = {"scale": self._regularization_coeff}

H
Hongyu Liu 已提交
227
        if framework.in_dygraph_mode():
228
            return core.ops.scale(param, "scale", self._regularization_coeff)
H
Hongyu Liu 已提交
229 230 231
        else:
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
C
chengduoZH 已提交
232

233 234 235 236 237 238
            # Append Op to calculate decay
            block.append_op(
                type='scale',
                inputs={"X": param},
                outputs={"Out": decay},
                attrs={"scale": self._regularization_coeff})
239

240
            return decay
241

F
fengjiayi 已提交
242 243 244
    def __str__(self):
        return "L2Decay, regularization_coeff=%f" % self._regularization_coeff

245 246

class L1DecayRegularizer(WeightDecayRegularizer):
247 248 249
    """
    Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
    
250 251 252 253 254
    It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ). 
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in 
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has 
    higher priority than ``optimizer`` .
    
255 256
    In the implementation, the formula of L1 Weight Decay Regularization is as follows:
	
257 258 259 260 261
    .. math::

        L1WeightDecay = reg\_coeff * sign(parameter)

    Args:
262
        regularization_coeff(float, optional): regularization coeff. Default:0.0.
263
	
264 265 266
    Examples:
        .. code-block:: python

267
            # Example1: set Regularizer in optimizer
268
            import paddle.fluid as fluid
269

270 271 272 273 274 275 276 277 278
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
X
Xin Pan 已提交
279 280 281 282
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
                regularization=fluid.regularizer.L1DecayRegularizer(
                    regularization_coeff=0.1))
283
            optimizer.minimize(avg_loss)
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
 

            # Example2: set Regularizer both in ParamAttr and optimizer
            import paddle.fluid as fluid

            l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
            l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
            x = fluid.layers.uniform_random([3,4])
            
            # set L1 regularization in fluid.ParamAttr
            w_param = fluid.ParamAttr(regularizer=l1)
            hidden1 = fluid.layers.fc(x, 8, param_attr=w_param)  # fc_0.w_0(L1), fc_0.b_0
            hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param)  # fc_1.w_0(L1), fc_1.b_0
            predict = fluid.layers.fc(hidden2, 32)   # fc_3.w_0, fc_3.b_0
            avg_loss = fluid.layers.mean(predict)

            # set L2 regularization in optimizer
            optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
            optimizer.minimize(avg_loss)
            
            # it will Print Message:
            # Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already. 
            # So, the Regularization of Optimizer will not take effect for these parameters!

308 309 310 311 312 313 314
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L1DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
315
    def __call__(self, param, grad, block):
316 317 318 319 320 321 322 323 324 325 326 327 328 329
        """Add L1 weight decay ops to network

        Adds L1 weight decay ops.
        L1WeightDecay = reg_coeff * sign(parameter)

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
        assert isinstance(param, framework.Parameter)
        assert isinstance(block, framework.Block)
C
chengduo 已提交
330

H
Hongyu Liu 已提交
331 332 333 334 335
        if framework.in_dygraph_mode():
            decay = block.create_var(dtype=param.dtype, shape=param.shape)
        else:
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
C
chengduoZH 已提交
336

337 338 339 340 341 342 343 344 345 346 347 348
        # Append sign op
        block.append_op(
            type='sign', inputs={"X": param}, outputs={"Out": decay})

        # Append scale op to the output of sign op
        block.append_op(
            type='scale',
            inputs={"X": decay},
            outputs={"Out": decay},
            attrs={"scale": self._regularization_coeff})

        return decay
349

F
fengjiayi 已提交
350 351 352
    def __str__(self):
        return "L1Decay, regularization_coeff=%f" % self._regularization_coeff

353 354 355 356 357 358 359

# We short the class name, since users will use the regulaizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
Y
Yu Yang 已提交
360
#                          param_attr=fluid.regularizer.Xavier())
361 362 363 364
#
# It is no need to add a `Regularizer` as the class suffix
L1Decay = L1DecayRegularizer
L2Decay = L2DecayRegularizer