op_test.py 18.9 KB
Newer Older
1 2
import unittest
import numpy as np
3
import random
4 5
import itertools
import paddle.v2.framework.core as core
Y
Yu Yang 已提交
6 7
import collections
from paddle.v2.framework.backward import append_backward_ops
8
from paddle.v2.framework.op import Operator
Y
Yang Yang(Tony) 已提交
9 10
from paddle.v2.framework.executor import Executor
from paddle.v2.framework.framework import Program, OpProtoHolder
11 12


13 14 15 16 17 18 19 20 21
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
    for i in xrange(len(prob)):
        prob[i] /= prob_sum[i]
    return prob


Q
qijun 已提交
22
def create_op(scope, op_type, inputs, outputs, attrs):
23 24
    kwargs = dict()

Y
Yu Yang 已提交
25
    def __create_var__(name, var_name):
Q
QI JUN 已提交
26
        scope.var(var_name).get_tensor()
Y
Yu Yang 已提交
27 28
        kwargs[name].append(var_name)

Q
qijun 已提交
29
    for in_name, in_dup in Operator.get_op_inputs(op_type):
30 31 32 33
        if in_name in inputs:
            kwargs[in_name] = []
            if in_dup:
                sub_in = inputs[in_name]
Q
qijun 已提交
34
                for sub_in_name, _ in sub_in:
Y
Yu Yang 已提交
35
                    __create_var__(in_name, sub_in_name)
36
            else:
Y
Yu Yang 已提交
37
                __create_var__(in_name, in_name)
38

Q
qijun 已提交
39
    for out_name, out_dup in Operator.get_op_outputs(op_type):
40 41 42
        if out_name in outputs:
            kwargs[out_name] = []
            if out_dup:
43 44
                sub_out = outputs[out_name]
                for sub_out_name, _ in sub_out:
Y
Yu Yang 已提交
45
                    __create_var__(out_name, sub_out_name)
46
            else:
Y
Yu Yang 已提交
47
                __create_var__(out_name, out_name)
48

Q
qijun 已提交
49
    for attr_name in Operator.get_op_attr_names(op_type):
Q
qijun 已提交
50 51
        if attr_name in attrs:
            kwargs[attr_name] = attrs[attr_name]
52

53 54 55 56
    return Operator(op_type, **kwargs)


def set_input(scope, op, inputs, place):
Y
Yu Yang 已提交
57
    def __set_input__(var_name, var):
58 59 60 61 62 63 64 65 66 67 68
        if isinstance(var, tuple) or isinstance(var, np.ndarray):
            tensor = scope.find_var(var_name).get_tensor()
            if isinstance(var, tuple):
                tensor.set_lod(var[1])
                var = var[0]
            tensor.set_dims(var.shape)
            tensor.set(var, place)
        elif isinstance(var, float):
            scope.find_var(var_name).set_float(var)
        elif isinstance(var, int):
            scope.find_var(var_name).set_int(var)
Y
Yu Yang 已提交
69

Q
qijun 已提交
70
    for in_name, in_dup in Operator.get_op_inputs(op.type()):
71 72 73
        if in_name in inputs:
            if in_dup:
                sub_in = inputs[in_name]
74
                for sub_in_name, sub_in_val in sub_in:
Y
Yu Yang 已提交
75
                    __set_input__(sub_in_name, sub_in_val)
76
            else:
Y
Yu Yang 已提交
77
                __set_input__(in_name, inputs[in_name])
78 79 80 81 82 83


def get_numeric_gradient(scope,
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
84
                         output_names,
85 86
                         delta=0.005,
                         in_place=False):
Y
Yu Yang 已提交
87
    # FIXME: change this method by compile time concepts
88 89 90 91 92 93 94 95
    set_input(scope, op, inputs, core.CPUPlace())

    def product(dim):
        return reduce(lambda a, b: a * b, dim, 1)

    ctx = core.DeviceContext.create(core.CPUPlace())

    def get_output():
Y
Yu Yang 已提交
96
        sum = []
Y
Yancey 已提交
97 98
        for output_name in output_names:
            op.run(scope, ctx)
Y
Yu Yang 已提交
99 100 101
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).mean())
        return np.array(sum).mean()
102 103 104

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
    tensor_size = product(tensor_to_check.get_dims())
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    tensor_to_check_dtype = tensor_to_check.dtype()
    if tensor_to_check_dtype == core.DataType.FP32:
        tensor_to_check_dtype = np.float32
    elif tensor_to_check_dtype == core.DataType.FP64:
        tensor_to_check_dtype = np.float64
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
        if tensor_to_check_dtype == np.float32:
            return tensor.get_float_element(i)
        else:
            return tensor.get_double_element(i)

    def __set_elem__(tensor, i, e):
        if tensor_to_check_dtype == np.float32:
            tensor.set_float_element(i, e)
        else:
            tensor.set_double_element(i, e)

128 129 130 131
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
    for i in xrange(tensor_size):
        if in_place:
Q
qijun 已提交
132
            set_input(scope, op, inputs, core.CPUPlace())
133 134

        # get one input element throw it's index i.
135
        origin = __get_elem__(tensor_to_check, i)
136 137
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
138
        __set_elem__(tensor_to_check, i, x_pos)
139 140 141
        y_pos = get_output()

        if in_place:
Q
qijun 已提交
142
            set_input(scope, op, inputs, core.CPUPlace())
143 144

        x_neg = origin - delta
145
        __set_elem__(tensor_to_check, i, x_neg)
146 147
        y_neg = get_output()

148
        __set_elem__(tensor_to_check, i, origin)
149 150 151 152 153
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

    return gradient_flat.reshape(tensor_to_check.get_dims())


Y
Yang Yang(Tony) 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def append_input_output(block, op_proto, np_list, is_input):
    '''Insert VarDesc and generate Python variable instance'''
    proto_list = op_proto.inputs if is_input else op_proto.outputs

    def create_var(block, name, np_list, var_proto):
        if name not in np_list:
            assert var_proto.intermediate, "{} not found".format(name)
            shape = None
            lod_level = None
        else:
            np_value = np_list[name]
            if isinstance(np_value, tuple):
                shape = list(np_value[0].shape)
                lod_level = len(np_value[1])
            else:
                shape = list(np_value.shape)
                lod_level = 0
        return block.create_var(
            dtype="float32", shape=shape, lod_level=lod_level, name=name)

    var_dict = {}
    for var_proto in proto_list:
        var_name = str(var_proto.name)
        if is_input:
            if (var_name not in np_list) and var_proto.dispensable:
                continue
            assert (var_name in np_list) or (var_proto.dispensable), \
181
                "Missing {} as input".format(var_name)
Y
Yang Yang(Tony) 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195
        if var_proto.duplicable:
            assert isinstance(np_list[var_name], list), \
                "Duplicable {} should be set as list".format(var_name)
            var_list = []
            for (name, np_value) in np_list[var_name]:
                var_list.append(
                    create_var(block, name, {name: np_value}, var_proto))
            var_dict[var_name] = var_list
        else:
            var_dict[var_name] = create_var(block, var_name, np_list, var_proto)

    return var_dict


196
class OpTest(unittest.TestCase):
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()

        np.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
        '''Restore random seeds'''
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

Y
Yang Yang(Tony) 已提交
212 213 214 215 216 217
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
218 219 220 221 222
                    if isinstance(np_value, tuple):
                        tensor.set(np_value[0], place)
                        tensor.set_lod(np_value[1])
                    else:
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
223 224 225 226 227 228 229 230 231 232 233 234
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
                    tensor.set(self.inputs[var_name][0], place)
                    tensor.set_lod(self.inputs[var_name][1])
                else:
                    tensor.set(self.inputs[var_name], place)
                feed_map[var_name] = tensor

        return feed_map

235
    def check_output_with_place(self, place, atol):
Y
Yang Yang(Tony) 已提交
236 237 238 239 240 241 242 243 244 245 246 247
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

        program = Program()
        block = program.global_block()

        inputs = append_input_output(block, op_proto, self.inputs, True)
        outputs = append_input_output(block, op_proto, self.outputs, False)
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
Q
QI JUN 已提交
248 249 250
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

        fetch_list = []
        for var_name, var in outputs.iteritems():
            if var_name in self.outputs:
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)

        feed_map = self.feed_var(inputs, place)

        exe = Executor(place)
        outs = exe.run(program, feed=feed_map, fetch_list=fetch_list)

        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
267 268 269
            if out_name not in self.outputs:
                continue

Y
Yang Yang(Tony) 已提交
270 271 272 273 274 275 276 277 278 279
            def find_actual(target_name, fetch_list):
                found = [
                    i for i, var in enumerate(fetch_list)
                    if var.name == target_name
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

280 281
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
282 283 284 285
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
                for sub_out_name, expect in sub_out:
Y
Yang Yang(Tony) 已提交
286
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
287 288
                    actual = outs[idx]
                    actual_t = np.array(actual)
289 290
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
291 292
                    self.assertTrue(
                        np.allclose(
293
                            actual_t, expect_t, atol=atol),
Y
Yang Yang(Tony) 已提交
294 295
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
296 297
                    if isinstance(expect, tuple):
                        self.assertListEqual(
Q
QI JUN 已提交
298 299
                            actual.lod(), expect[1], "Output (" + sub_out_name +
                            ") has different lod at " + str(place))
300
            else:
Y
Yang Yang(Tony) 已提交
301
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
302 303
                actual = outs[idx]
                actual_t = np.array(actual)
304
                expect = self.outputs[out_name]
305
                expect_t = expect[0] if isinstance(expect, tuple) else expect
306 307
                self.assertTrue(
                    np.allclose(
308
                        actual_t, expect_t, atol=atol),
D
dangqingqing 已提交
309
                    "Output (" + out_name + ") has diff at " + str(place))
310
                if isinstance(expect, tuple):
Q
QI JUN 已提交
311
                    self.assertListEqual(actual.lod(), expect[1],
312 313
                                         "Output (" + out_name +
                                         ") has different lod at " + str(place))
314

315
    def check_output(self, atol=1e-5):
Q
qijun 已提交
316
        places = [core.CPUPlace()]
Y
Yang Yang(Tony) 已提交
317
        if core.is_compile_gpu() and core.op_support_gpu(self.op_type):
Q
qijun 已提交
318 319
            places.append(core.GPUPlace(0))
        for place in places:
320
            self.check_output_with_place(place, atol)
Q
qijun 已提交
321

322 323 324 325 326 327 328 329 330 331 332 333
    def __assert_is_close(self, numeric_grads, analytic_grads, names,
                          max_relative_error, msg_prefix):

        for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
334
                return ("%s Variable %s max gradient diff %f over limit %f, "
335
                        "the first error element is %d, %f, %f") % (
336
                            msg_prefix, name, max_diff, max_relative_error,
337
                            offset, a.flatten()[offset], b.flatten()[offset])
338 339 340 341 342

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
343
                   output_names,
344
                   no_grad_set=None,
345
                   numeric_grad_delta=0.005,
346
                   in_place=False,
Q
Qiao Longfei 已提交
347 348
                   max_relative_error=0.005,
                   user_defined_grads=None):
349
        self.scope = core.Scope()
Q
qijun 已提交
350
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
351
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
352
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
353
        self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
Q
qijun 已提交
354
                            op_attrs)
Y
Yu Yang 已提交
355

356 357 358
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
359 360 361
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
362
        numeric_grads = user_defined_grads or [
363 364 365 366 367
            get_numeric_gradient(
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
368
                output_names,
369
                delta=numeric_grad_delta,
370 371
                in_place=in_place) for input_to_check in inputs_to_check
        ]
Q
qijun 已提交
372
        cpu_place = core.CPUPlace()
Y
Yu Yang 已提交
373 374
        cpu_analytic_grads = self._get_gradient(inputs_to_check, cpu_place,
                                                output_names, no_grad_set)
375

Y
Yu Yang 已提交
376 377
        self.__assert_is_close(numeric_grads, cpu_analytic_grads,
                               inputs_to_check, max_relative_error,
Q
qijun 已提交
378 379 380 381
                               "Gradient Check On %s" % str(cpu_place))

        if core.is_compile_gpu() and self.op.support_gpu():
            gpu_place = core.GPUPlace(0)
Y
Yu Yang 已提交
382 383
            gpu_analytic_grads = self._get_gradient(inputs_to_check, gpu_place,
                                                    output_names, no_grad_set)
384

Q
qijun 已提交
385
            self.__assert_is_close(numeric_grads, gpu_analytic_grads,
Y
Yu Yang 已提交
386
                                   inputs_to_check, max_relative_error,
Q
qijun 已提交
387 388
                                   "Gradient Check On %s" % str(gpu_place))

Y
Yu Yang 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
    @staticmethod
    def _create_var_descs_(block, var_dict):
        # FIXME: Try unify with `append_input_output`
        for param_name in var_dict:
            var = var_dict[param_name]
            if not isinstance(var, list) and not isinstance(var, tuple):
                var = [(param_name, var, None)]
            if not isinstance(var[0], list) and not isinstance(var[0], tuple):
                var = [(param_name, var[0], var[1])]

            for i, item in enumerate(var):
                if not isinstance(item[0], basestring):
                    item = [[param_name] + list(item)]
                if len(item) == 2:
403 404 405 406 407
                    if isinstance(item[1], tuple):
                        var[i] = [item[0], item[1][0], item[1][1]]
                    else:
                        # only set var name and value, set lod to None
                        var[i] = list(item) + [None]
Y
Yu Yang 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
            var_descs = [(block.create_var(
                name=name, shape=each.shape, dtype=each.dtype), each, lod)
                         for name, each, lod in var]

            yield param_name, var_descs

    @staticmethod
    def _merge_list(iterable):
        return reduce(lambda a, b: list(a) + list(b), iterable, [])

    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
            tensor.set_lod(lod)
        return tensor

    def _get_gradient(self, input_to_check, place, output_names, no_grad_set):
        prog = Program()
        block = prog.global_block()
        inputs_with_np = {
            key: value
            for (key, value) in OpTest._create_var_descs_(
                block, getattr(self, 'inputs', {}))
        }
        outputs_with_np = {
            key: val
            for (key, val) in OpTest._create_var_descs_(
                block, getattr(self, 'outputs', {}))
        }
        inputs = {
            k: [item[0] for item in inputs_with_np[k]]
            for k in inputs_with_np
        }
        outputs = {
            k: [item[0] for item in outputs_with_np[k]]
            for k in outputs_with_np
        }

Q
QI JUN 已提交
448
        op = block.append_op(
Y
Yu Yang 已提交
449 450 451 452 453
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=getattr(self, 'attrs', {}))

Q
QI JUN 已提交
454 455 456 457
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)

Y
Yu Yang 已提交
458 459 460 461
        mean_inputs = map(block.var, output_names)

        if len(mean_inputs) == 1:
            loss = block.create_var(dtype=mean_inputs[0].data_type, shape=[1])
Q
QI JUN 已提交
462
            op = block.append_op(
Y
Yu Yang 已提交
463
                inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mean')
Q
QI JUN 已提交
464 465
            op.desc.infer_var_type(block.desc)
            op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
466 467 468 469 470
        else:
            avg_sum = []
            for cur_loss in mean_inputs:
                cur_avg_loss = block.create_var(
                    dtype=cur_loss.data_type, shape=[1])
Q
QI JUN 已提交
471
                op = block.append_op(
Y
Yu Yang 已提交
472 473 474
                    inputs={"X": [cur_loss]},
                    outputs={"Out": [cur_avg_loss]},
                    type="mean")
Q
QI JUN 已提交
475 476
                op.desc.infer_var_type(block.desc)
                op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
477 478 479
                avg_sum.append(cur_avg_loss)

            loss_sum = block.create_var(dtype=avg_sum[0].data_type, shape=[1])
Q
QI JUN 已提交
480
            op_sum = block.append_op(
Y
Yu Yang 已提交
481
                inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='sum')
Q
QI JUN 已提交
482 483
            op_sum.desc.infer_var_type(block.desc)
            op_sum.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
484 485

            loss = block.create_var(dtype=loss_sum.data_type, shape=[1])
Q
QI JUN 已提交
486
            op_loss = block.append_op(
Y
Yu Yang 已提交
487 488 489 490
                inputs={"X": loss_sum},
                outputs={"Out": loss},
                type='scale',
                attrs={'scale': 1.0 / float(len(avg_sum))})
Q
QI JUN 已提交
491 492
            op_loss.desc.infer_var_type(block.desc)
            op_loss.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505

        param_grad_list = append_backward_ops(
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

        feed_dict = {
            item[0].name: OpTest._numpy_to_lod_tensor(item[1], item[2], place)
            for p_name in inputs_with_np for item in inputs_with_np[p_name]
        }

        fetch_list = [g for p, g in param_grad_list]
        executor = Executor(place)
        result = executor.run(prog, feed_dict, fetch_list)
        return map(np.array, result)