math_function.cc 12.0 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/math_function.h"
16
#include "paddle/framework/data_type.h"
Q
qijun 已提交
17 18 19 20 21 22

namespace paddle {
namespace operators {
namespace math {

template <>
23 24
void gemm<platform::CPUPlace, float>(const platform::DeviceContext& context,
                                     const CBLAS_TRANSPOSE transA,
Q
qijun 已提交
25 26 27
                                     const CBLAS_TRANSPOSE transB, const int M,
                                     const int N, const int K,
                                     const float alpha, const float* A,
28 29
                                     const float* B, const float beta,
                                     float* C) {
D
dongzhihong 已提交
30 31
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
32
  int ldc = N;
Q
qijun 已提交
33 34
  cblas_sgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
              beta, C, ldc);
Q
qijun 已提交
35 36 37
}

template <>
38 39
void gemm<platform::CPUPlace, double>(const platform::DeviceContext& context,
                                      const CBLAS_TRANSPOSE transA,
Q
qijun 已提交
40 41 42 43
                                      const CBLAS_TRANSPOSE transB, const int M,
                                      const int N, const int K,
                                      const double alpha, const double* A,
                                      const double* B, const double beta,
44
                                      double* C) {
D
dongzhihong 已提交
45 46
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
47
  int ldc = N;
Q
qijun 已提交
48 49
  cblas_dgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
              beta, C, ldc);
Q
qijun 已提交
50 51
}

G
guosheng 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
template <>
void gemm<platform::CPUPlace, float>(const platform::DeviceContext& context,
                                     const bool transA, const bool transB,
                                     const int M, const int N, const int K,
                                     const float alpha, const float* A,
                                     const int lda, const float* B,
                                     const int ldb, const float beta, float* C,
                                     const int ldc) {
  cblas_sgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
              transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
              lda, B, ldb, beta, C, ldc);
}

template <>
void gemm<platform::CPUPlace, double>(const platform::DeviceContext& context,
                                      const bool transA, const bool transB,
                                      const int M, const int N, const int K,
                                      const double alpha, const double* A,
                                      const int lda, const double* B,
                                      const int ldb, const double beta,
                                      double* C, const int ldc) {
  cblas_dgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
              transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
              lda, B, ldb, beta, C, ldc);
}

Q
qijun 已提交
78
template <>
79 80 81 82
void matmul<platform::CPUPlace, float>(
    const platform::DeviceContext& context, const framework::Tensor& matrix_a,
    bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha,
    framework::Tensor* matrix_out, float beta) {
Q
qijun 已提交
83 84 85 86 87 88 89 90 91
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
                     platform::is_cpu_place(matrix_b.place()) &&
                     platform::is_cpu_place(matrix_out->place()),
Q
qijun 已提交
92 93
                 "Matrix must all be in CPUPlace");

Q
qijun 已提交
94 95 96
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];
Q
qijun 已提交
97

Q
qijun 已提交
98 99
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
100

Q
qijun 已提交
101
  gemm<platform::CPUPlace, float>(
102 103
      context, transA, transB, M, N, K, alpha, matrix_a.data<float>(),
      matrix_b.data<float>(), beta, matrix_out->data<float>());
Q
qijun 已提交
104 105 106
}

template <>
107 108 109 110
void matmul<platform::CPUPlace, double>(
    const platform::DeviceContext& context, const framework::Tensor& matrix_a,
    bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha,
    framework::Tensor* matrix_out, double beta) {
Q
qijun 已提交
111 112 113 114 115 116 117 118 119
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
                     platform::is_cpu_place(matrix_b.place()) &&
                     platform::is_cpu_place(matrix_out->place()),
Q
qijun 已提交
120 121
                 "Matrix must all be in CPUPlace");

Q
qijun 已提交
122 123 124 125 126 127
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
128

Q
qijun 已提交
129
  gemm<platform::CPUPlace, double>(
130 131
      context, transA, transB, M, N, K, alpha, matrix_a.data<double>(),
      matrix_b.data<double>(), beta, matrix_out->data<double>());
Q
qijun 已提交
132 133
}

M
Markus Kliegl 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
#ifdef PADDLE_USE_MKLML
// Use cblas_{s,d}gemm_batched if available: Run with 1 group of size batchSize.
template <>
void batched_gemm<platform::CPUPlace, float>(
    const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const float alpha, const float* A, const float* B, const float beta,
    float* C, const int batchCount, const int strideA, const int strideB) {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const float*>(batchCount);
  auto b_array = std::vector<const float*>(batchCount);
  auto c_array = std::vector<float*>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }
  cblas_sgemm_batch(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                    a_array.data(), &lda, b_array.data(), &ldb, &beta,
                    c_array.data(), &ldc, 1 /* group_count */, &batchCount);
}

template <>
void batched_gemm<platform::CPUPlace, double>(
    const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const double alpha, const double* A, const double* B, const double beta,
    double* C, const int batchCount, const int strideA, const int strideB) {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const double*>(batchCount);
  auto b_array = std::vector<const double*>(batchCount);
  auto c_array = std::vector<double*>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }
  cblas_dgemm_batch(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                    a_array.data(), &lda, b_array.data(), &ldb, &beta,
                    c_array.data(), &ldc, 1 /* group_count */, &batchCount);
}
#else
// The below is a naive but correct serial implementation that just loops
// over the batch dimension. This is a fallback for when the batched gemm
// functions of Intel MKL are not available. In the future, this computation
// should be parallelized.
template <>
void batched_gemm<platform::CPUPlace, float>(
    const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const float alpha, const float* A, const float* B, const float beta,
    float* C, const int batchCount, const int strideA, const int strideB) {
  for (int k = 0; k < batchCount; ++k) {
    const float* Ak = &A[k * strideA];
    const float* Bk = &B[k * strideB];
    float* Ck = &C[k * M * N];
    gemm<platform::CPUPlace, float>(context, transA, transB, M, N, K, alpha, Ak,
                                    Bk, beta, Ck);
  }
}

template <>
void batched_gemm<platform::CPUPlace, double>(
    const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const double alpha, const double* A, const double* B, const double beta,
    double* C, const int batchCount, const int strideA, const int strideB) {
  for (int k = 0; k < batchCount; ++k) {
    const double* Ak = &A[k * strideA];
    const double* Bk = &B[k * strideB];
    double* Ck = &C[k * M * N];
    gemm<platform::CPUPlace, double>(context, transA, transB, M, N, K, alpha,
                                     Ak, Bk, beta, Ck);
  }
}
#endif

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
template <>
void gemv<platform::CPUPlace, float>(const platform::DeviceContext& context,
                                     const bool trans_a, const int M,
                                     const int N, const float alpha,
                                     const float* A, const float* B,
                                     const float beta, float* C) {
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  cblas_sgemv(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}

template <>
void gemv<platform::CPUPlace, double>(const platform::DeviceContext& context,
                                      const bool trans_a, const int M,
                                      const int N, const double alpha,
                                      const double* A, const double* B,
                                      const double beta, double* C) {
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  cblas_dgemv(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}

Q
qijun 已提交
235 236
template struct SetConstant<platform::CPUPlace, float>;

237 238
struct TensorSetConstantCPU {
  TensorSetConstantCPU(framework::Tensor* tensor, float value)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
      : tensor_(tensor), value_(value) {}
  template <typename T>
  void operator()() const {
    auto cpu = platform::CPUPlace();
    auto* begin = tensor_->mutable_data<T>(cpu);
    std::fill(begin, begin + tensor_->numel(), static_cast<T>(value_));
  }
  framework::Tensor* tensor_;
  float value_;
};

template <>
void set_constant_with_place<platform::CPUPlace>(
    const platform::DeviceContext& context, framework::Tensor* tensor,
    float value) {
  framework::VisitDataType(framework::ToDataType(tensor->type()),
255
                           TensorSetConstantCPU(tensor, value));
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
}

struct TensorSetConstantWithPlace : public boost::static_visitor<void> {
  TensorSetConstantWithPlace(const platform::DeviceContext& context,
                             framework::Tensor* tensor, float value)
      : context_(context), tensor_(tensor), value_(value) {}

  template <typename Place>
  void operator()(Place place) const {
    set_constant_with_place<Place>(context_, tensor_, value_);
  }

  const platform::DeviceContext& context_;
  framework::Tensor* tensor_;
  float value_;
};

void set_constant(const platform::DeviceContext& context,
                  framework::Tensor* tensor, float value) {
Y
Fix CI  
Yu Yang 已提交
275
  TensorSetConstantWithPlace func(context, tensor, value);
276
#ifdef PADDLE_WITH_CUDA
Y
Fix CI  
Yu Yang 已提交
277
  tensor->place().apply_visitor(func);
278 279 280 281 282
#else
  func(platform::CPUPlace());
#endif
}

Q
qijun 已提交
283 284 285
}  // namespace math
}  // namespace operators
}  // namespace paddle