sequence_decoder.html 36.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Design: Sequence Decoder Generating LoDTensors &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../genindex.html"/>
        <link rel="search" title="搜索" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a></li>
85 86 87
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_cn.html">安装与编译</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶使用</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_cn.html">开发标准</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a><ul>
111 112
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/quickstart_cn.html">快速开始</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
113 114
</ul>
</li>
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶使用</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/cmd_parameter/index_cn.html">命令行参数设置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/cluster/index_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/cluster/preparations_cn.html">环境准备</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/cluster/cmd_argument_cn.html">启动参数说明</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/cluster/multi_cluster/index_cn.html">在不同集群中运行</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../../howto/cluster/multi_cluster/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../../howto/cluster/multi_cluster/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
134 135
<li class="toctree-l4"><a class="reference internal" href="../../howto/cluster/multi_cluster/openmpi_cn.html">在OpenMPI集群中提交训练作业</a></li>
<li class="toctree-l4"><a class="reference internal" href="../../howto/cluster/multi_cluster/fabric_cn.html">使用fabric启动集群训练</a></li>
136
<li class="toctree-l4"><a class="reference internal" href="../../howto/cluster/multi_cluster/k8s_aws_cn.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
137 138 139 140
</ul>
</li>
</ul>
</li>
141 142 143 144
<li class="toctree-l2"><a class="reference internal" href="../../howto/capi/index_cn.html">C-API预测库</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/capi/compile_paddle_lib_cn.html">安装与编译C-API预测库</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/capi/workflow_of_capi_cn.html">C-API使用流程</a></li>
145 146
</ul>
</li>
147
<li class="toctree-l2"><a class="reference internal" href="../../howto/rnn/index_cn.html">RNN模型</a><ul>
148 149 150 151
<li class="toctree-l3"><a class="reference internal" href="../../howto/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
152 153
</ul>
</li>
154
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_cn.html">GPU性能调优</a></li>
155 156
</ul>
</li>
157 158 159
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_cn.html">开发标准</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../dev/write_docs_cn.html">如何贡献文档</a></li>
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Design: Sequence Decoder Generating LoDTensors</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="design-sequence-decoder-generating-lodtensors">
<span id="design-sequence-decoder-generating-lodtensors"></span><h1>Design: Sequence Decoder Generating LoDTensors<a class="headerlink" href="#design-sequence-decoder-generating-lodtensors" title="永久链接至标题"></a></h1>
201 202
<p>In tasks such as machine translation and visual captioning,
a <a class="reference external" href="https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md">sequence decoder</a> is necessary to generate sequences, one word at a time.</p>
203 204 205
<p>This documentation describes how to implement the sequence decoder as an operator.</p>
<div class="section" id="beam-search-based-decoder">
<span id="beam-search-based-decoder"></span><h2>Beam Search based Decoder<a class="headerlink" href="#beam-search-based-decoder" title="永久链接至标题"></a></h2>
206 207 208 209 210
<p>The <a class="reference external" href="https://en.wikipedia.org/wiki/Beam_search">beam search algorithm</a> is necessary when generating sequences. It is a heuristic search algorithm that explores the paths by expanding the most promising node in a limited set.</p>
<p>In the old version of PaddlePaddle, the C++ class <code class="docutils literal"><span class="pre">RecurrentGradientMachine</span></code> implements the general sequence decoder based on beam search, due to the complexity involved, the implementation relies on a lot of special data structures that are quite trivial and hard to be customized by users.</p>
<p>There are a lot of heuristic tricks in the sequence generation tasks, so the flexibility of sequence decoder is very important to users.</p>
<p>During the refactoring of PaddlePaddle, some new concepts are proposed such as:  <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md">LoDTensor</a> and <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/tensor_array.md">TensorArray</a> that can better support the sequence usage, and they can also help make the implementation of beam search based sequence decoder <strong>more transparent and modular</strong> .</p>
<p>For example, the RNN states, candidates IDs and probabilities of beam search can be represented all as <code class="docutils literal"><span class="pre">LoDTensors</span></code>;
211 212 213 214
the selected candidate&#8217;s IDs in each time step can be stored in a <code class="docutils literal"><span class="pre">TensorArray</span></code>, and <code class="docutils literal"><span class="pre">Packed</span></code> to the sentences translated.</p>
</div>
<div class="section" id="changing-lod-s-absolute-offset-to-relative-offsets">
<span id="changing-lod-s-absolute-offset-to-relative-offsets"></span><h2>Changing LoD&#8217;s absolute offset to relative offsets<a class="headerlink" href="#changing-lod-s-absolute-offset-to-relative-offsets" title="永久链接至标题"></a></h2>
215 216 217
<p>The current <code class="docutils literal"><span class="pre">LoDTensor</span></code> is designed to store levels of variable-length sequences. It stores several arrays of integers where each represents a level.</p>
<p>The integers in each level represent the begin and end (not inclusive) offset of a sequence <strong>in the underlying tensor</strong>,
let&#8217;s call this format the <strong>absolute-offset LoD</strong> for clarity.</p>
218
<p>The absolute-offset LoD can retrieve any sequence very quickly but fails to represent empty sequences, for example, a two-level LoD is as follows</p>
219 220 221 222 223 224 225 226 227 228 229
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="p">[[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">9</span><span class="p">]</span>
 <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">9</span><span class="p">]]</span>
</pre></div>
</div>
<p>The first level tells that there are two sequences:</p>
<ul class="simple">
<li>the first&#8217;s offset is <code class="docutils literal"><span class="pre">[0,</span> <span class="pre">3)</span></code></li>
<li>the second&#8217;s offset is <code class="docutils literal"><span class="pre">[3,</span> <span class="pre">9)</span></code></li>
</ul>
<p>while on the second level, there are several empty sequences that both begin and end at <code class="docutils literal"><span class="pre">3</span></code>.
It is impossible to tell how many empty second-level sequences exist in the first-level sequences.</p>
230
<p>There are many scenarios that rely on empty sequence representation, for example in machine translation or visual captioning, one instance has no translation or the empty candidate set for a prefix.</p>
231 232 233 234 235 236 237 238 239 240 241
<p>So let&#8217;s introduce another format of LoD,
it stores <strong>the offsets of the lower level sequences</strong> and is called <strong>relative-offset</strong> LoD.</p>
<p>For example, to represent the same sequences of the above data</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="p">[[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">6</span><span class="p">]</span>
 <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">9</span><span class="p">]]</span>
</pre></div>
</div>
<p>the first level represents that there are two sequences,
their offsets in the second-level LoD is <code class="docutils literal"><span class="pre">[0,</span> <span class="pre">3)</span></code> and <code class="docutils literal"><span class="pre">[3,</span> <span class="pre">5)</span></code>.</p>
<p>The second level is the same with the relative offset example because the lower level is a tensor.
It is easy to find out the second sequence in the first-level LoD has two empty sequences.</p>
242
<p>The following examples are based on relative-offset LoD.</p>
243 244 245
</div>
<div class="section" id="usage-in-a-simple-machine-translation-model">
<span id="usage-in-a-simple-machine-translation-model"></span><h2>Usage in a simple machine translation model<a class="headerlink" href="#usage-in-a-simple-machine-translation-model" title="永久链接至标题"></a></h2>
246 247
<p>Let&#8217;s start from a simple machine translation model that is simplified from the <a class="reference external" href="https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation">machine translation chapter</a> to draw a blueprint of what a sequence decoder can do and how to use it.</p>
<p>The model has an encoder that learns the semantic vector from a sequence, and a decoder which uses the sequence encoder to generate new sentences.</p>
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
<p><strong>Encoder</strong></p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle</span> <span class="kn">as</span> <span class="nn">pd</span>

<span class="n">dict_size</span> <span class="o">=</span> <span class="mi">8000</span>
<span class="n">source_dict_size</span> <span class="o">=</span> <span class="n">dict_size</span>
<span class="n">target_dict_size</span> <span class="o">=</span> <span class="n">dict_size</span>
<span class="n">word_vector_dim</span> <span class="o">=</span> <span class="mi">128</span>
<span class="n">encoder_dim</span> <span class="o">=</span> <span class="mi">128</span>
<span class="n">decoder_dim</span> <span class="o">=</span> <span class="mi">128</span>
<span class="n">beam_size</span> <span class="o">=</span> <span class="mi">5</span>
<span class="n">max_length</span> <span class="o">=</span> <span class="mi">120</span>

<span class="c1"># encoder</span>
<span class="n">src_word_id</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">data</span><span class="p">(</span>
    <span class="n">name</span><span class="o">=</span><span class="s1">&#39;source_language_word&#39;</span><span class="p">,</span>
    <span class="nb">type</span><span class="o">=</span><span class="n">pd</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">integer_value_sequence</span><span class="p">(</span><span class="n">source_dict_dim</span><span class="p">))</span>
<span class="n">src_embedding</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="n">source_dict_size</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">word_vector_dim</span><span class="p">)</span>

<span class="n">src_word_vec</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">lookup</span><span class="p">(</span><span class="n">src_embedding</span><span class="p">,</span> <span class="n">src_word_id</span><span class="p">)</span>

<span class="n">encoder_out_seq</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">gru</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">src_word_vec</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">encoder_dim</span><span class="p">)</span>

<span class="n">encoder_ctx</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">last_seq</span><span class="p">(</span><span class="n">encoder_out_seq</span><span class="p">)</span>
<span class="c1"># encoder_ctx_proj is the learned semantic vector</span>
<span class="n">encoder_ctx_proj</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span>
    <span class="n">encoder_ctx</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">decoder_dim</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="n">pd</span><span class="o">.</span><span class="n">activation</span><span class="o">.</span><span class="n">Tanh</span><span class="p">(),</span> <span class="n">bias</span><span class="o">=</span><span class="bp">None</span><span class="p">)</span>
</pre></div>
</div>
<p><strong>Decoder</strong></p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">generate</span><span class="p">():</span>
    <span class="n">decoder</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">while_loop</span><span class="p">()</span>
    <span class="k">with</span> <span class="n">decoder</span><span class="o">.</span><span class="n">step</span><span class="p">():</span>
        <span class="n">decoder_mem</span> <span class="o">=</span> <span class="n">decoder</span><span class="o">.</span><span class="n">memory</span><span class="p">(</span><span class="n">init</span><span class="o">=</span><span class="n">encoder_ctx</span><span class="p">)</span>  <span class="c1"># mark the memory</span>
        <span class="n">generated_ids</span> <span class="o">=</span> <span class="n">decoder</span><span class="o">.</span><span class="n">memory</span><span class="p">()</span> <span class="c1"># TODO init to batch_size &lt;s&gt;s</span>
        <span class="n">generated_scores</span> <span class="o">=</span> <span class="n">decoder</span><span class="o">.</span><span class="n">memory</span><span class="p">()</span> <span class="c1"># TODO init to batch_size 1s or 0s</span>

        <span class="n">target_word</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">lookup</span><span class="p">(</span><span class="n">trg_embedding</span><span class="p">,</span> <span class="n">gendrated_ids</span><span class="p">)</span>
        <span class="c1"># expand encoder_ctx&#39;s batch to fit target_word&#39;s lod</span>
        <span class="c1"># for example</span>
        <span class="c1"># decoder_mem.lod is</span>
        <span class="c1"># [[0 1 3],</span>
        <span class="c1">#  [0 1 3 6]]</span>
        <span class="c1"># its tensor content is [a1 a2 a3 a4 a5]</span>
        <span class="c1"># which means there are 2 sentences to translate</span>
        <span class="c1">#   - the first sentence has 1 translation prefixes, the offsets are [0, 1)</span>
        <span class="c1">#   - the second sentence has 2 translation prefixes, the offsets are [1, 3) and [3, 6)</span>
294
        <span class="c1"># the target_word.lod is</span>
295 296 297 298 299 300 301 302 303 304
        <span class="c1"># [[0, 1, 6]</span>
        <span class="c1">#  [0, 2, 4, 7, 9 12]]</span>
        <span class="c1"># which means 2 sentences to translate, each has 1 and 5 prefixes</span>
        <span class="c1"># the first prefix has 2 candidates</span>
        <span class="c1"># the following has 2, 3, 2, 3 candidates</span>
        <span class="c1"># the encoder_ctx_expanded&#39;s content will be</span>
        <span class="c1"># [a1 a1 a2 a2 a3 a3 a3 a4 a4 a5 a5 a5]</span>
        <span class="n">encoder_ctx_expanded</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">lod_expand</span><span class="p">(</span><span class="n">encoder_ctx</span><span class="p">,</span> <span class="n">target_word</span><span class="p">)</span>
        <span class="n">decoder_input</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span>
            <span class="n">act</span><span class="o">=</span><span class="n">pd</span><span class="o">.</span><span class="n">activation</span><span class="o">.</span><span class="n">Linear</span><span class="p">(),</span>
305
            <span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">target_word</span><span class="p">,</span> <span class="n">encoder_ctx_expanded</span><span class="p">],</span>
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
            <span class="n">size</span><span class="o">=</span><span class="mi">3</span> <span class="o">*</span> <span class="n">decoder_dim</span><span class="p">)</span>
        <span class="n">gru_out</span><span class="p">,</span> <span class="n">cur_mem</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">gru_step</span><span class="p">(</span>
            <span class="n">decoder_input</span><span class="p">,</span> <span class="n">mem</span><span class="o">=</span><span class="n">decoder_mem</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">decoder_dim</span><span class="p">)</span>
        <span class="n">scores</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span>
            <span class="n">gru_out</span><span class="p">,</span>
            <span class="n">size</span><span class="o">=</span><span class="n">trg_dic_size</span><span class="p">,</span>
            <span class="n">bias</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
            <span class="n">act</span><span class="o">=</span><span class="n">pd</span><span class="o">.</span><span class="n">activation</span><span class="o">.</span><span class="n">Softmax</span><span class="p">())</span>
        <span class="c1"># K is an config</span>
        <span class="n">topk_scores</span><span class="p">,</span> <span class="n">topk_ids</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">top_k</span><span class="p">(</span><span class="n">scores</span><span class="p">,</span> <span class="n">K</span><span class="p">)</span>
        <span class="n">topk_generated_scores</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span><span class="n">topk_scores</span><span class="p">,</span> <span class="n">generated_scores</span><span class="p">)</span>

        <span class="n">selected_ids</span><span class="p">,</span> <span class="n">selected_generation_scores</span> <span class="o">=</span> <span class="n">decoder</span><span class="o">.</span><span class="n">beam_search</span><span class="p">(</span>
            <span class="n">topk_ids</span><span class="p">,</span> <span class="n">topk_generated_scores</span><span class="p">)</span>

        <span class="c1"># update the states</span>
        <span class="n">decoder_mem</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">cur_mem</span><span class="p">)</span>  <span class="c1"># tells how to update state</span>
        <span class="n">generated_ids</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">selected_ids</span><span class="p">)</span>
        <span class="n">generated_scores</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">selected_generation_scores</span><span class="p">)</span>

        <span class="n">decoder</span><span class="o">.</span><span class="n">output</span><span class="p">(</span><span class="n">selected_ids</span><span class="p">)</span>
        <span class="n">decoder</span><span class="o">.</span><span class="n">output</span><span class="p">(</span><span class="n">selected_generation_scores</span><span class="p">)</span>

<span class="n">translation_ids</span><span class="p">,</span> <span class="n">translation_scores</span> <span class="o">=</span> <span class="n">decoder</span><span class="p">()</span>
</pre></div>
</div>
332 333 334
<p>The <code class="docutils literal"><span class="pre">decoder.beam_search</span></code> is an operator that, given the candidates and the scores of translations including the candidates,
returns the result of the beam search algorithm.</p>
<p>In this way, users can customize anything on the input or output of beam search, for example:</p>
335
<ol class="simple">
336 337 338
<li>Make the corresponding elements in <code class="docutils literal"><span class="pre">topk_generated_scores</span></code> zero or some small values, beam_search will discard this candidate.</li>
<li>Remove some specific candidate in <code class="docutils literal"><span class="pre">selected_ids</span></code>.</li>
<li>Get the final <code class="docutils literal"><span class="pre">translation_ids</span></code>, remove the translation sequence in it.</li>
339
</ol>
340 341 342
<p>The implementation of sequence decoder can reuse the C++ class:  <a class="reference external" href="https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/paddle/operators/dynamic_recurrent_op.h#L30">RNNAlgorithm</a>,
so the python syntax is quite similar to that of an  <a class="reference external" href="https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/doc/design/block.md#blocks-with-for-and-rnnop">RNN</a>.</p>
<p>Both of them are two-level <code class="docutils literal"><span class="pre">LoDTensors</span></code>:</p>
343
<ul class="simple">
344 345
<li>The first level represents <code class="docutils literal"><span class="pre">batch_size</span></code> of (source) sentences.</li>
<li>The second level represents the candidate ID sets for translation prefix.</li>
346
</ul>
347 348 349
<p>For example, 3 source sentences to translate, and has 2, 3, 1 candidates.</p>
<p>Unlike an RNN, in sequence decoder, the previous state and the current state have different LoD and shape, and an <code class="docutils literal"><span class="pre">lod_expand</span></code> operator is used to expand the LoD of the previous state to fit the current state.</p>
<p>For example, the previous state:</p>
350 351 352 353
<ul class="simple">
<li>LoD is <code class="docutils literal"><span class="pre">[0,</span> <span class="pre">1,</span> <span class="pre">3][0,</span> <span class="pre">2,</span> <span class="pre">5,</span> <span class="pre">6]</span></code></li>
<li>content of tensor is <code class="docutils literal"><span class="pre">a1</span> <span class="pre">a2</span> <span class="pre">b1</span> <span class="pre">b2</span> <span class="pre">b3</span> <span class="pre">c1</span></code></li>
</ul>
354
<p>the current state is stored in <code class="docutils literal"><span class="pre">encoder_ctx_expanded</span></code>:</p>
355 356 357 358 359 360 361 362 363 364 365 366
<ul class="simple">
<li>LoD is <code class="docutils literal"><span class="pre">[0,</span> <span class="pre">2,</span> <span class="pre">7][0</span> <span class="pre">3</span> <span class="pre">5</span> <span class="pre">8</span> <span class="pre">9</span> <span class="pre">11</span> <span class="pre">11]</span></code></li>
<li>the content is<ul>
<li>a1 a1 a1 (a1 has 3 candidates, so the state should be copied 3 times for each candidates)</li>
<li>a2 a2</li>
<li>b1 b1 b1</li>
<li>b2</li>
<li>b3 b3</li>
<li>None (c1 has 0 candidates, so c1 is dropped)</li>
</ul>
</li>
</ul>
367 368
<p>The benefit from the relative offset LoD is that the empty candidate set can be represented naturally.</p>
<p>The status in each time step can be stored in <code class="docutils literal"><span class="pre">TensorArray</span></code>, and <code class="docutils literal"><span class="pre">Pack</span></code>ed to a final LoDTensor. The corresponding syntax is:</p>
369 370 371 372
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">decoder</span><span class="o">.</span><span class="n">output</span><span class="p">(</span><span class="n">selected_ids</span><span class="p">)</span>
<span class="n">decoder</span><span class="o">.</span><span class="n">output</span><span class="p">(</span><span class="n">selected_generation_scores</span><span class="p">)</span>
</pre></div>
</div>
373 374 375
<p>The <code class="docutils literal"><span class="pre">selected_ids</span></code> are the candidate ids for the prefixes, and will be <code class="docutils literal"><span class="pre">Packed</span></code> by <code class="docutils literal"><span class="pre">TensorArray</span></code> to a two-level <code class="docutils literal"><span class="pre">LoDTensor</span></code>, where the first level represents the source sequences and the second level represents generated sequences.</p>
<p>Packing the <code class="docutils literal"><span class="pre">selected_scores</span></code> will get a <code class="docutils literal"><span class="pre">LoDTensor</span></code> that stores scores of each translation candidate.</p>
<p>Packing the <code class="docutils literal"><span class="pre">selected_generation_scores</span></code> will get a <code class="docutils literal"><span class="pre">LoDTensor</span></code>, and each tail is the probability of the translation.</p>
376 377 378 379 380
</div>
<div class="section" id="lod-and-shape-changes-during-decoding">
<span id="lod-and-shape-changes-during-decoding"></span><h2>LoD and shape changes during decoding<a class="headerlink" href="#lod-and-shape-changes-during-decoding" title="永久链接至标题"></a></h2>
<p align="center">
  <img src="./images/LOD-and-shape-changes-during-decoding.jpg"/>
381
</p><p>According to the image above, the only phase that changes the LoD is beam search.</p>
382 383 384
</div>
<div class="section" id="beam-search-design">
<span id="beam-search-design"></span><h2>Beam search design<a class="headerlink" href="#beam-search-design" title="永久链接至标题"></a></h2>
385
<p>The beam search algorithm will be implemented as one method of the sequence decoder and has 3 inputs:</p>
386
<ol class="simple">
387
<li><code class="docutils literal"><span class="pre">topk_ids</span></code>, the top K candidate ids for each prefix.</li>
388 389 390
<li><code class="docutils literal"><span class="pre">topk_scores</span></code>, the corresponding scores for <code class="docutils literal"><span class="pre">topk_ids</span></code></li>
<li><code class="docutils literal"><span class="pre">generated_scores</span></code>, the score of the prefixes.</li>
</ol>
391 392
<p>All of these are LoDTensors, so that the sequence affiliation is clear. Beam search will keep a beam for each prefix and select a smaller candidate set for each prefix.</p>
<p>It will return three variables:</p>
393 394 395
<ol class="simple">
<li><code class="docutils literal"><span class="pre">selected_ids</span></code>, the final candidate beam search function selected for the next step.</li>
<li><code class="docutils literal"><span class="pre">selected_scores</span></code>, the scores for the candidates.</li>
396
<li><code class="docutils literal"><span class="pre">generated_scores</span></code>, the updated scores for each prefix (with the new candidates appended).</li>
397 398 399 400
</ol>
</div>
<div class="section" id="introducing-the-lod-based-pack-and-unpack-methods-in-tensorarray">
<span id="introducing-the-lod-based-pack-and-unpack-methods-in-tensorarray"></span><h2>Introducing the LoD-based <code class="docutils literal"><span class="pre">Pack</span></code> and <code class="docutils literal"><span class="pre">Unpack</span></code> methods in <code class="docutils literal"><span class="pre">TensorArray</span></code><a class="headerlink" href="#introducing-the-lod-based-pack-and-unpack-methods-in-tensorarray" title="永久链接至标题"></a></h2>
401
<p>The <code class="docutils literal"><span class="pre">selected_ids</span></code>, <code class="docutils literal"><span class="pre">selected_scores</span></code> and <code class="docutils literal"><span class="pre">generated_scores</span></code> are LoDTensors that exist at each time step,
402
so it is natural to store them in arrays.</p>
403 404 405
<p>Currently, PaddlePaddle has a module called <code class="docutils literal"><span class="pre">TensorArray</span></code> which can store an array of tensors. It is better to store the results of beam search in a <code class="docutils literal"><span class="pre">TensorArray</span></code>.</p>
<p>The <code class="docutils literal"><span class="pre">Pack</span></code> and <code class="docutils literal"><span class="pre">UnPack</span></code> in <code class="docutils literal"><span class="pre">TensorArray</span></code> are used to pack tensors in the array to an <code class="docutils literal"><span class="pre">LoDTensor</span></code> or split the <code class="docutils literal"><span class="pre">LoDTensor</span></code> to an array of tensors.
It needs some extensions to support the packing or unpacking an array of <code class="docutils literal"><span class="pre">LoDTensors</span></code>.</p>
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>