fluid_cluster_train_en.html 26.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Fluid Distributed Training &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
27
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
28 29 30 31 32
  

  
  
        <link rel="index" title="Index"
33 34 35
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/> 
36 37

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
38
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
39 40 41 42 43 44 45 46 47 48 49 50 51
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
52
  <script src="../../_static/js/modernizr.min.js"></script>
53 54 55 56 57 58 59 60

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
61
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
84 85 86 87
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_en.html">Install and Build</a></li>
<li class="toctree-l1"><a class="reference internal" href="../index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_en.html">Development</a></li>
88 89 90 91
</ul>

        
<div role="search">
92
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
109 110
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/quickstart_en.html">Quick Start</a></li>
111 112
</ul>
</li>
113 114 115 116
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/build_from_source_en.html">Build from Sources</a></li>
117 118
</ul>
</li>
119
<li class="toctree-l1"><a class="reference internal" href="../index_en.html">HOW TO</a><ul>
120 121 122 123 124 125
<li class="toctree-l2"><a class="reference internal" href="../cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
126 127 128 129 130 131 132 133
<li class="toctree-l2"><a class="reference internal" href="index_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="preparations_en.html">Preparations</a></li>
<li class="toctree-l3"><a class="reference internal" href="cmd_argument_en.html">Command-line arguments</a></li>
<li class="toctree-l3"><a class="reference internal" href="multi_cluster/index_en.html">Use different clusters</a><ul>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/fabric_en.html">Cluster Training Using Fabric</a></li>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/openmpi_en.html">Cluster Training Using OpenMPI</a></li>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/k8s_en.html">PaddlePaddle On Kubernetes</a></li>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
134 135
</ul>
</li>
136 137 138 139 140 141 142 143 144 145
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_en.html">Development</a><ul>
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
<li class="toctree-l2"><a class="reference internal" href="../../dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../dev/write_docs_en.html">Contribute Documentation</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Fluid Distributed Training</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="fluid-distributed-training">
<span id="fluid-distributed-training"></span><h1>Fluid Distributed Training<a class="headerlink" href="#fluid-distributed-training" title="Permalink to this headline"></a></h1>
<div class="section" id="introduction">
<span id="introduction"></span><h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h2>
184
<p>In this article, we&#8217;ll explain how to configure and run distributed training jobs with PaddlePaddle Fluid in a bare metal cluster.</p>
185 186 187
</div>
<div class="section" id="preparations">
<span id="preparations"></span><h2>Preparations<a class="headerlink" href="#preparations" title="Permalink to this headline"></a></h2>
188 189 190
<div class="section" id="getting-the-cluster-ready">
<span id="getting-the-cluster-ready"></span><h3>Getting the cluster ready<a class="headerlink" href="#getting-the-cluster-ready" title="Permalink to this headline"></a></h3>
<p>Prepare the compute nodes in the cluster. Nodes in this cluster can be of any specification that runs PaddlePaddle, and with a unique IP address assigned to it. Make sure they can communicate to each other.</p>
191 192 193 194
</div>
<div class="section" id="have-paddlepaddle-installed">
<span id="have-paddlepaddle-installed"></span><h3>Have PaddlePaddle installed<a class="headerlink" href="#have-paddlepaddle-installed" title="Permalink to this headline"></a></h3>
<p>PaddlePaddle must be installed on all nodes. If you have GPU cards on your nodes, be sure to properly install drivers and CUDA libraries.</p>
195
<p>PaddlePaddle build and installation guide can be found  <a class="reference external" href="http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html">here</a>.</p>
196 197 198 199
<p>In addition to above, the <code class="docutils literal"><span class="pre">cmake</span></code> command should be run with the option <code class="docutils literal"><span class="pre">WITH_DISTRIBUTE</span></code> set to on. An example bare minimum <code class="docutils literal"><span class="pre">cmake</span></code> command would look as follows:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>cmake .. -DWITH_DOC<span class="o">=</span>OFF -DWITH_GPU<span class="o">=</span>OFF -DWITH_DISTRIBUTE<span class="o">=</span>ON -DWITH_SWIG_PY<span class="o">=</span>ON -DWITH_PYTHON<span class="o">=</span>ON
</pre></div>
</div>
200
</div>
201 202
<div class="section" id="update-the-training-script">
<span id="update-the-training-script"></span><h3>Update the training script<a class="headerlink" href="#update-the-training-script" title="Permalink to this headline"></a></h3>
203 204 205
<div class="section" id="non-cluster-training-script">
<span id="non-cluster-training-script"></span><h4>Non-cluster training script<a class="headerlink" href="#non-cluster-training-script" title="Permalink to this headline"></a></h4>
<p>Let&#8217;s take <a class="reference external" href="http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html">Deep Learning 101</a>&#8216;s first chapter: &#8220;fit a line&#8221; as an example.</p>
206
<p>The non-cluster version of this demo with fluid API is as follows:</p>
207
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.v2</span> <span class="kn">as</span> <span class="nn">paddle</span>
208
<span class="kn">import</span> <span class="nn">paddle.fluid</span> <span class="kn">as</span> <span class="nn">fluid</span>
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

<span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">13</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">y_predict</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>

<span class="n">cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">square_error_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">y_predict</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">y</span><span class="p">)</span>
<span class="n">avg_cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">cost</span><span class="p">)</span>

<span class="n">sgd_optimizer</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">learning_rate</span><span class="o">=</span><span class="mf">0.001</span><span class="p">)</span>
<span class="n">sgd_optimizer</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">avg_cost</span><span class="p">)</span>

<span class="n">BATCH_SIZE</span> <span class="o">=</span> <span class="mi">20</span>

<span class="n">train_reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span>
    <span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span>
        <span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">uci_housing</span><span class="o">.</span><span class="n">train</span><span class="p">(),</span> <span class="n">buf_size</span><span class="o">=</span><span class="mi">500</span><span class="p">),</span>
    <span class="n">batch_size</span><span class="o">=</span><span class="n">BATCH_SIZE</span><span class="p">)</span>

<span class="n">place</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">CPUPlace</span><span class="p">()</span>
<span class="n">feeder</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">DataFeeder</span><span class="p">(</span><span class="n">place</span><span class="o">=</span><span class="n">place</span><span class="p">,</span> <span class="n">feed_list</span><span class="o">=</span><span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">])</span>
<span class="n">exe</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Executor</span><span class="p">(</span><span class="n">place</span><span class="p">)</span>

<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fluid</span><span class="o">.</span><span class="n">default_startup_program</span><span class="p">())</span>

<span class="n">PASS_NUM</span> <span class="o">=</span> <span class="mi">100</span>
<span class="k">for</span> <span class="n">pass_id</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">PASS_NUM</span><span class="p">):</span>
    <span class="n">fluid</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">save_persistables</span><span class="p">(</span><span class="n">exe</span><span class="p">,</span> <span class="s2">&quot;./fit_a_line.model/&quot;</span><span class="p">)</span>
    <span class="n">fluid</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">load_persistables</span><span class="p">(</span><span class="n">exe</span><span class="p">,</span> <span class="s2">&quot;./fit_a_line.model/&quot;</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">train_reader</span><span class="p">():</span>
        <span class="n">avg_loss_value</span><span class="p">,</span> <span class="o">=</span> <span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fluid</span><span class="o">.</span><span class="n">default_main_program</span><span class="p">(),</span>
                                  <span class="n">feed</span><span class="o">=</span><span class="n">feeder</span><span class="o">.</span><span class="n">feed</span><span class="p">(</span><span class="n">data</span><span class="p">),</span>
                                  <span class="n">fetch_list</span><span class="o">=</span><span class="p">[</span><span class="n">avg_cost</span><span class="p">])</span>

        <span class="k">if</span> <span class="n">avg_loss_value</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">&lt;</span> <span class="mf">10.0</span><span class="p">:</span>
            <span class="nb">exit</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>  <span class="c1"># if avg cost less than 10.0, we think our code is good.</span>
<span class="nb">exit</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
247 248
<p>We created a simple fully-connected neural network training program and handed it to the fluid executor to run for 100 passes.</p>
<p>Now let&#8217;s try to convert it to a distributed version to run on a cluster.</p>
249 250 251
</div>
<div class="section" id="introducing-parameter-server">
<span id="introducing-parameter-server"></span><h4>Introducing parameter server<a class="headerlink" href="#introducing-parameter-server" title="Permalink to this headline"></a></h4>
252
<p>As we can see from the non-cluster version of training script, there is only one role in the script: the trainer, that performs the computing as well as holds the parameters. In cluster training, since multi-trainers are working on the same task, they need one centralized place to hold and distribute parameters. This centralized place is called the Parameter Server in PaddlePaddle.</p>
253
<p><img alt="parameter server architecture" src="../../_images/trainer.png" /></p>
254 255
<p>Parameter Server in fluid not only holds the parameters but is also assigned with a part of the program. Trainers communicate with parameter servers via send/receive OPs. For more technical details, please refer to  <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/dist_refactor/distributed_architecture.md">this document</a>.</p>
<p>Now we need to create programs for both: trainers and parameter servers, the question is how?</p>
256 257 258
</div>
<div class="section" id="slice-the-program">
<span id="slice-the-program"></span><h4>Slice the program<a class="headerlink" href="#slice-the-program" title="Permalink to this headline"></a></h4>
259 260
<p>Fluid provides a tool called &#8220;Distributed Transpiler&#8221; that automatically converts the non-cluster program into cluster program.</p>
<p>The idea behind this tool is to find the optimize OPs and gradient parameters, slice the program into 2 pieces and connect them with send/receive OP.</p>
261 262 263 264 265 266
<p>Optimize OPs and gradient parameters can be found from the return values of optimizer&#8217;s minimize function.</p>
<p>To put them together:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="o">...</span> <span class="c1">#define the program, cost, and create sgd optimizer</span>

<span class="n">optimize_ops</span><span class="p">,</span> <span class="n">params_grads</span> <span class="o">=</span> <span class="n">sgd_optimizer</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">avg_cost</span><span class="p">)</span> <span class="c1">#get optimize OPs and gradient parameters</span>

267
<span class="n">t</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">DistributeTranspiler</span><span class="p">()</span> <span class="c1"># create the transpiler instance</span>
268
<span class="c1"># slice the program into 2 pieces with optimizer_ops and gradient parameters list, as well as pserver_endpoints, which is a comma separated list of [IP:PORT] and number of trainers</span>
269
<span class="n">t</span><span class="o">.</span><span class="n">transpile</span><span class="p">(</span><span class="n">optimize_ops</span><span class="p">,</span> <span class="n">params_grads</span><span class="p">,</span> <span class="n">pservers</span><span class="o">=</span><span class="n">pserver_endpoints</span><span class="p">,</span> <span class="n">trainers</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
270 271 272 273 274

<span class="o">...</span> <span class="c1">#create executor</span>

<span class="c1"># in pserver, run this</span>
<span class="c1">#current_endpoint here means current pserver IP:PORT you wish to run on</span>
275 276 277 278
<span class="n">pserver_prog</span> <span class="o">=</span> <span class="n">t</span><span class="o">.</span><span class="n">get_pserver_program</span><span class="p">(</span><span class="n">current_endpoint</span><span class="p">)</span>
<span class="n">pserver_startup</span> <span class="o">=</span> <span class="n">t</span><span class="o">.</span><span class="n">get_startup_program</span><span class="p">(</span><span class="n">current_endpoint</span><span class="p">,</span> <span class="n">pserver_prog</span><span class="p">)</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">pserver_startup</span><span class="p">)</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">pserver_prog</span><span class="p">)</span>
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

<span class="c1"># in trainer, run this</span>
<span class="o">...</span> <span class="c1"># define data reader</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fluid</span><span class="o">.</span><span class="n">default_startup_program</span><span class="p">())</span>
<span class="k">for</span> <span class="n">pass_id</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">100</span><span class="p">):</span>
    <span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">train_reader</span><span class="p">():</span>
        <span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">t</span><span class="o">.</span><span class="n">get_trainer_program</span><span class="p">())</span>


</pre></div>
</div>
</div>
</div>
<div class="section" id="e2e-demo">
<span id="e2e-demo"></span><h3>E2E demo<a class="headerlink" href="#e2e-demo" title="Permalink to this headline"></a></h3>
294
<p>Please find the complete demo from <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/tests/book_distribute/notest_dist_fit_a_line.py">here</a>.
295
First <code class="docutils literal"><span class="pre">cd</span></code> into the folder that contains the <code class="docutils literal"><span class="pre">python</span></code> files. In this case:</p>
296
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">cd</span> /paddle/python/paddle/fluid/tests/book_distribute
297 298 299
</pre></div>
</div>
<p>In parameter server node run the following in the command line:</p>
300 301 302 303 304
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">PSERVERS</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">SERVER_ENDPOINT</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">TRAINING_ROLE</span><span class="o">=</span>PSERVER python notest_dist_fit_a_line.py
</pre></div>
</div>
<p><em>please note we assume that your parameter server runs at 192.168.1.2:6174</em></p>
<p>Wait until the prompt <code class="docutils literal"><span class="pre">Server</span> <span class="pre">listening</span> <span class="pre">on</span> <span class="pre">192.168.1.2:6174</span></code></p>
305
<p>Then in 2 of your trainer nodes run this:</p>
306 307 308
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">PSERVERS</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">SERVER_ENDPOINT</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">TRAINING_ROLE</span><span class="o">=</span>TRAINER python notest_dist_fit_a_line.py
</pre></div>
</div>
309
<p><em>the reason you need to run this command twice in 2 nodes is because: in the script we set the trainer count to be 2. You can change this setting on line 50</em></p>
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
<p>Now you have 2 trainers and 1 parameter server up and running.</p>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
346
            URL_ROOT:'../../',
347 348 349 350 351 352 353
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
354 355 356
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
357 358 359 360 361 362
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
363
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
364 365 366 367
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
368
  <script src="../../_static/js/paddle_doc_init.js"></script> 
369 370 371

</body>
</html>