kernel_selection.html 19.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Background &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../genindex.html"/>
        <link rel="search" title="Search" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a></li>
85
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_en.html">Install and Build</a></li>
86
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a></li>
87
<li class="toctree-l1"><a class="reference internal" href="../dev/index_en.html">Development</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a><ul>
110
<li class="toctree-l2"><a class="reference internal" href="../getstarted/quickstart_en.html">Quick Start</a></li>
111 112
</ul>
</li>
113 114 115 116
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_from_source_en.html">Build from Sources</a></li>
117 118 119
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a><ul>
120 121 122 123
<li class="toctree-l2"><a class="reference internal" href="../howto/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
124 125
</ul>
</li>
126 127 128 129 130 131 132 133
<li class="toctree-l2"><a class="reference internal" href="../howto/cluster/index_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/preparations_en.html">Preparations</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/cmd_argument_en.html">Command-line arguments</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/multi_cluster/index_en.html">Use different clusters</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/fabric_en.html">Cluster Training Using Fabric</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/openmpi_en.html">Cluster Training Using OpenMPI</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_en.html">PaddlePaddle On Kubernetes</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
134 135
</ul>
</li>
136 137 138 139
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/rnn_config_en.html">RNN Configuration</a></li>
140 141 142 143 144
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
145 146 147 148 149 150
<li class="toctree-l1"><a class="reference internal" href="../dev/index_en.html">Development</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/write_docs_en.html">Contribute Documentation</a></li>
</ul>
</li>
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Background</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="background">
<span id="background"></span><h1>Background<a class="headerlink" href="#background" title="Permalink to this headline"></a></h1>
182 183 184
<p>Every operator has many kernels because there are multiple data types, places, data layout, library type that Fluid supports. We use the <code class="docutils literal"><span class="pre">OpKernelType</span></code> to describe kernel types that operators can hold.</p>
<p>The <code class="docutils literal"><span class="pre">OpKernelType</span></code> is as follows:</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">struct</span> <span class="n">OpKernelType</span> <span class="p">{</span>
185 186
  <span class="n">Place</span> <span class="n">place_</span><span class="p">;</span>
  <span class="n">DataType</span> <span class="n">data_type_</span><span class="p">;</span>
187 188
  <span class="n">DataLayout</span> <span class="n">data_layout_</span><span class="p">;</span>
  <span class="n">LibraryType</span> <span class="n">library_type_</span><span class="p">;</span>
189 190 191
<span class="p">};</span>
</pre></div>
</div>
192 193 194 195 196 197
<ul class="simple">
<li>The <code class="docutils literal"><span class="pre">place_</span></code> is a descriptor of the device, e.g., CPUPlace, CUDAPlace.</li>
<li>The <code class="docutils literal"><span class="pre">data_type_</span></code> is the data type that this kernel performs on, e.g., <code class="docutils literal"><span class="pre">FP32</span></code>, <code class="docutils literal"><span class="pre">INT64</span></code>. Note that one kernel may have inputs with different data types. However, it will be a major <code class="docutils literal"><span class="pre">data_type</span></code>. For example, the <code class="docutils literal"><span class="pre">cross_entropy</span></code> takes <code class="docutils literal"><span class="pre">int64</span></code> as it label, and <code class="docutils literal"><span class="pre">double</span></code>/<code class="docutils literal"><span class="pre">float</span></code> as its input logit and output cost. The major <code class="docutils literal"><span class="pre">data_type</span></code> of <code class="docutils literal"><span class="pre">cross_entropy</span></code> is <code class="docutils literal"><span class="pre">float</span></code> or <code class="docutils literal"><span class="pre">double</span></code>.</li>
<li>The <code class="docutils literal"><span class="pre">data_layout_</span></code> is useful for some computational library. One example is that MKLDNN uses many kinds of layout, such as <code class="docutils literal"><span class="pre">nChw8c</span></code>. Each kind of layout will invoke the different kernel.</li>
<li>The <code class="docutils literal"><span class="pre">library_type_</span></code> describes the computational library, e.g., <code class="docutils literal"><span class="pre">MKLDNN</span></code>, <code class="docutils literal"><span class="pre">CUDNN</span></code>.</li>
</ul>
198 199 200 201 202 203 204 205 206
</div>
<div class="section" id="problem">
<span id="problem"></span><h1>Problem<a class="headerlink" href="#problem" title="Permalink to this headline"></a></h1>
<p>We register a kernel for every operator and every kernel type ideally. However, it is impracticable for the following situations.</p>
<ol class="simple">
<li>Some operators, like CRF, are complicated and inefficient to be implemented on GPU. The CRF operator will only have a CPU kernel.</li>
<li>Some operators will take too many memory. It is better to force them into CPU. However, the rest of operators in this neural network will be performed on GPU, i.e., model parallel problem.</li>
<li>Some layout and place are particular. One example is that MKLDNN uses <code class="docutils literal"><span class="pre">nChw8</span></code> and there is no other library uses <code class="docutils literal"><span class="pre">nChw8c</span></code>.</li>
</ol>
207 208 209 210 211 212 213 214 215 216 217
<p>Take one situation to give a detailed explanation, if we have two Operators: OP1 and OP2, OP1 has one output <code class="docutils literal"><span class="pre">op1_to_op2</span></code>, and <code class="docutils literal"><span class="pre">op1_to_op2</span></code> is the input of OP2.</p>
<p>If OP1 and OP2 run on the same place(for example CPUPlace), then <code class="docutils literal"><span class="pre">op1_2_op2</span></code> can be used directly by OP2.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">OP1</span><span class="p">(</span><span class="n">CPUPlace</span><span class="p">)</span>
     <span class="o">|</span>
 <span class="n">op1_2_op2</span>
     <span class="o">|</span>
<span class="n">OP2</span><span class="p">(</span><span class="n">CPUPlace</span><span class="p">)</span>
</pre></div>
</div>
<p>If OP1 and OP2 run one different place, then OP2 cannot <code class="docutils literal"><span class="pre">use</span> <span class="pre">op1_2_op2</span></code> directly.</p>
<p>Problems under these situations are similar. We can formalize this problem as follow.</p>
218 219
<p>We register kernels with types $KT = {kt_1, kt_2, kt_3, ...}$ for one operator. The inputs of this operator should be run on kernel type $kt_{?}$, which the $kt_{?} \notin KT$. How to cast the input of this operator from $kt_{?}$ to any of kernel type in $KT$.</p>
</div>
220 221 222 223
<div class="section" id="solution-data-transform">
<span id="solution-data-transform"></span><h1>Solution: data transform<a class="headerlink" href="#solution-data-transform" title="Permalink to this headline"></a></h1>
<p>It is clear that transforming inputs of an operator to adapt another kernel type is not related to the particular operator. So we should register these transformation methods as global methods.</p>
<p>We can infer kernel type for each input of an operator. We let this kernel type as <code class="docutils literal"><span class="pre">actual</span> <span class="pre">kernel</span> <span class="pre">type</span> <span class="pre">for</span> <span class="pre">var</span></code>, which means this kernel type is the kernel type that can process this input variable.</p>
224
<p>We can get a kernel type by 1) The configuration of operator description. (Users may want to force use <code class="docutils literal"><span class="pre">MKL</span></code> for <code class="docutils literal"><span class="pre">conv</span></code> operator). 2) The place of the current executor. (Executor is running on GPU). This kernel type is what we expect the operator will be performed on. We let this kernel type as <code class="docutils literal"><span class="pre">expect</span> <span class="pre">kernel</span> <span class="pre">type</span></code>.</p>
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
<p>We transform the input data from <code class="docutils literal"><span class="pre">actual</span></code> to <code class="docutils literal"><span class="pre">expect</span></code> if the actual kernel type is not as same as expect kernel type.</p>
<p>The algorithm is described as following</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="kt">void</span> <span class="n">OperatorWithKernel</span><span class="o">::</span><span class="n">Run</span><span class="p">(</span>
        <span class="k">const</span> <span class="n">Scope</span><span class="o">&amp;</span> <span class="n">scope</span><span class="p">,</span>
        <span class="k">const</span> <span class="n">platform</span><span class="o">::</span><span class="n">Place</span><span class="o">&amp;</span> <span class="n">place</span><span class="p">)</span> <span class="k">const</span> <span class="p">{</span>
  <span class="n">ExecutionContext</span> <span class="n">ctx</span><span class="p">(...);</span>
  <span class="k">auto</span> <span class="n">expected_kernel_key</span> <span class="o">=</span> <span class="k">this</span><span class="o">-&gt;</span><span class="n">GetExpectedKernelType</span><span class="p">(</span><span class="n">ctx</span><span class="p">);</span>

  <span class="n">Scope</span><span class="o">&amp;</span> <span class="n">new_scope</span> <span class="o">=</span> <span class="n">scope</span><span class="p">.</span><span class="n">NewScope</span><span class="p">();</span>

  <span class="k">for</span> <span class="p">(</span><span class="k">auto</span><span class="o">&amp;</span> <span class="nl">var_name</span> <span class="p">:</span> <span class="k">this</span><span class="o">-&gt;</span><span class="n">Inputs</span><span class="p">())</span> <span class="p">{</span>
    <span class="k">auto</span><span class="o">*</span> <span class="n">tensor_in</span> <span class="o">=</span> <span class="n">GetTensor</span><span class="p">(</span><span class="n">var_name</span><span class="p">);</span>
    <span class="k">auto</span> <span class="n">kernel_type_for_var</span> <span class="o">=</span> <span class="k">this</span><span class="o">-&gt;</span><span class="n">GetKernelTypeForVar</span><span class="p">(...);</span>
    <span class="k">if</span> <span class="p">(</span><span class="n">kernel_type_for_var</span><span class="p">.</span><span class="n">place_</span> <span class="o">!=</span> <span class="n">expected_kernel_key</span><span class="p">.</span><span class="n">place_</span><span class="p">)</span> <span class="p">{</span>
      <span class="k">auto</span><span class="o">*</span> <span class="n">trans_var</span> <span class="o">=</span> <span class="n">new_scope</span><span class="p">.</span><span class="n">Var</span><span class="p">(</span><span class="n">var_name</span><span class="p">);</span>
      <span class="k">auto</span><span class="o">*</span> <span class="n">out</span> <span class="o">=</span> <span class="n">DataTransform</span><span class="p">(</span><span class="n">expected_kernel_key</span><span class="p">,</span>
                                <span class="n">kernel_type_for_var</span><span class="p">,</span>
                                <span class="o">*</span><span class="n">tensor_in</span><span class="p">);</span>
      <span class="n">CopyVariableWithTensor</span><span class="p">(...);</span>
    <span class="p">}</span>
  <span class="p">}</span>

  <span class="k">auto</span> <span class="n">kernel</span> <span class="o">=</span> <span class="n">kernels</span><span class="p">.</span><span class="n">find</span><span class="p">(</span><span class="n">expected_kernel_key</span><span class="p">);</span>
  <span class="n">kernel</span><span class="o">-&gt;</span><span class="n">Compute</span><span class="p">(</span><span class="n">ExecutionContext</span><span class="p">(...));</span>
249 250 251
<span class="p">}</span>
</pre></div>
</div>
252 253 254 255 256 257 258 259 260 261 262 263
<p>then the actual process for the multi-device above will be:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">OP1</span><span class="p">(</span><span class="n">CPUPlace</span><span class="p">)</span>
     <span class="o">|</span>
<span class="n">op1_2_op2</span><span class="p">(</span><span class="n">on</span> <span class="n">CPU</span><span class="p">)</span>
     <span class="o">|</span>
<span class="p">[</span><span class="n">transform</span><span class="p">](</span><span class="kn">from</span> <span class="nn">CPU</span> <span class="n">to</span> <span class="n">GPU</span><span class="p">)</span>
     <span class="o">|</span>
<span class="n">op1_2_op2</span><span class="p">(</span><span class="n">on</span> <span class="n">GPU</span><span class="p">)</span>
     <span class="o">|</span>
<span class="n">OP2</span><span class="p">(</span><span class="n">CUDAPlace</span><span class="p">)</span>
</pre></div>
</div>
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>