conv_kernel_impl.h 6.4 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/phi/kernels/conv_kernel.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
#include "paddle/phi/kernels/funcs/batch_norm_utils.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
23
#include "paddle/phi/kernels/funcs/vol2col.h"
H
hong 已提交
24 25 26 27

namespace phi {

template <typename T, typename Context>
28 29 30 31 32 33 34 35 36 37
void ConvKernelImpl(const Context& dev_ctx,
                    const DenseTensor& input,
                    const DenseTensor& filter_t,
                    const std::vector<int>& strides,
                    const std::vector<int>& paddings_t,
                    const std::string& padding_algorithm,
                    int groups,
                    const std::vector<int>& dilations_t,
                    const std::string& data_format,
                    DenseTensor* output) {
H
hong 已提交
38 39 40 41 42 43
  std::vector<int> paddings = paddings_t;
  std::vector<int> dilations = dilations_t;
  DenseTensor filter = filter_t;
  // The filter will be reshaped in the calculations,
  // so here use an assignment operation,
  // that avoids modifying the variable in the Scope.
H
hong 已提交
44
  dev_ctx.template Alloc<T>(output);
H
hong 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

  DenseTensor transformed_input(input.type());
  DenseTensor transformed_output(output->type());

  if (channel_last) {
    ResizeToChannelFirst<Context, T>(dev_ctx, &input, &transformed_input);
    TransToChannelFirst<Context, T>(dev_ctx, &input, &transformed_input);

    ResizeToChannelFirst<Context, T>(dev_ctx, output, &transformed_output);

  } else {
    transformed_input = input;
    transformed_output = *output;
  }

  // update padding and dilation
  auto trans_in_dims = transformed_input.dims();
  auto filter_dims = filter.dims();

  DDim in_data_dims = slice_ddim(trans_in_dims, 2, trans_in_dims.size());
  DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());

  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  const int batch_size = static_cast<int>(transformed_input.dims()[0]);

  // filter_shape_vec:
  // {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
  std::vector<int64_t> filter_shape_vec(vectorize(filter.dims()));

  // output_shape_vec:
  // {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
  std::vector<int64_t> output_shape_vec(vectorize(transformed_output.dims()));

  // use col_shape in the im2col calculation
  // col_shape_vec:
  // {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w,
  // o_d,o_h, o_w}
  size_t data_dim = filter_shape_vec.size() - 2;

  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = trans_in_dims[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }

  DDim col_shape(make_ddim(col_shape_vec));

  // use col_matrix_shape in the gemm calculation
  // size:
  // (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d * o_h *
  // o_w)

  DDim col_matrix_shape = flatten_to_2d(col_shape, data_dim);

  bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);

  DenseTensor col;
  // col_matrix shares the same piece of data with col,
  // but will be reshaped into a two-dimensional matrix shape
  // to call the matrix multiplication interface.
  DenseTensor col_matrix;
  if (is_expand) {
    // col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
    col.Resize(col_shape);
H
hong 已提交
115
    dev_ctx.template Alloc<T>(&col);
H
hong 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  DDim in_matrix_shape =
      slice_ddim(transformed_input.dims(), 1, transformed_input.dims().size());

  DDim filter_matrix_shape = {filter.dims()[0],
                              filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);

  DDim output_matrix_shape = {
      transformed_output.dims()[1],
      transformed_output.numel() /
          (transformed_output.dims()[0] * transformed_output.dims()[1])};

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(transformed_input.dims()[1]) / groups;
  int out_step = static_cast<int>(transformed_output.dims()[1]) / groups;

136
  phi::funcs::Vol2ColFunctor<Context, T> vol2col;
H
hong 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  paddle::operators::math::
      Im2ColFunctor<paddle::operators::math::ColFormat::kCFO, Context, T>
          im2col;

  auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);
  for (int i = 0; i < batch_size; i++) {
    DenseTensor in_batch =
        transformed_input.Slice(i, i + 1).Resize(in_matrix_shape);
    DenseTensor out_batch =
        transformed_output.Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      DenseTensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        im2col(dev_ctx,
               in_slice,
               dilations,
               strides,
               std::vector<int>{
                   paddings[0], paddings[2], paddings[1], paddings[3]},
               &col);

      } else if (data_dim == 3U) {
        vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
      }

      // gemm
      DenseTensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      DenseTensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
      blas.MatMul(
          filter_slice, false, col_matrix, false, T(1.0), &out_slice, T(0.0));
    }
  }
  if (channel_last) {
    TransToChannelLast<Context, T>(dev_ctx, &transformed_output, output);
  }
}

}  // namespace phi