prroi_pool_op.cc 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/prroi_pool_op.h"
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include <memory>

namespace paddle {
namespace operators {

class PRROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor), "
             "the input of PRROIPoolOp. "
             "The format of input tensor is NCHW. Where N is the batch size, "
             "C is the number of input channels, "
             "H is the height of the input feature map, and "
             "W is the width.");
    AddInput("ROIs",
33
             "(phi::DenseTensor), "
34
             "ROIs (Regions of Interest) to pool over. "
35
             "should be a 2-D phi::DenseTensor of shape (num_rois, 4) "
36 37 38 39
             "given as [(x1, y1, x2, y2), ...]. "
             "where (x1, y1) is the top left coordinates, and "
             "(x2, y2) is the bottom right coordinates. "
             "The roi batch index can be calculated from LoD.");
40 41 42 43 44
    AddInput("BatchRoINums",
             "(Tensor), "
             "1-D tensor with shape [N], the number of"
             " rois for each image in batch, where N is the batch size")
        .AsDispensable();
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    AddOutput("Out",
              "(Tensor), "
              "the output of PRROIPoolOp is a 4-D Tensor with shape "
              "(num_rois, output_channels, pooled_h, pooled_w).");
    AddAttr<float>("spatial_scale",
                   "(float, default 1.0), "
                   "Multiplicative spatial scale factor "
                   "to translate ROI coords from their input scale "
                   "to the scale used when pooling.")
        .SetDefault(1.0);
    AddAttr<int>("pooled_height",
                 "(int, default 1), "
                 "the pooled output height.")
        .SetDefault(1);
    AddAttr<int>("pooled_width",
                 "(int, default 1), "
                 "the pooled output width.")
        .SetDefault(1);
    AddComment(R"Doc(
**PRROIPool Operator**

Precise region of interest pooling (also known as PRROIPooling) is to perform
 bilinear interpolation average pooling method for RoI Pooling.

Please refer to https://arxiv.org/abs/1807.11590 for more details.

    )Doc");
  }
};

class PRROIPoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
80 81 82 83
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prroi_pool");
    OP_INOUT_CHECK(ctx->HasInput("ROIs"), "Input", "ROIs", "prroi_pool");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Input", "Out", "prroi_pool");

84 85 86
    auto input_dims = ctx->GetInputDim("X");
    auto rois_dims = ctx->GetInputDim("ROIs");

87 88
    PADDLE_ENFORCE_EQ(input_dims.size(),
                      4,
89 90 91
                      platform::errors::InvalidArgument(
                          "The format of input tensor is NCHW"));
    PADDLE_ENFORCE_EQ(
92 93
        rois_dims.size(),
        2,
94
        platform::errors::InvalidArgument(
95
            "ROIs should be a 2-D phi::DenseTensor of shape (num_rois, 4) "
96 97
            "given as [(x1, y1, x2, y2), ...]"));
    PADDLE_ENFORCE_EQ(
98 99
        rois_dims[1],
        4,
100
        platform::errors::InvalidArgument(
101
            "ROIs should be a 2-D phi::DenseTensor of shape (num_rois, 4) "
102
            "given as [(x1, y1, x2, y2), ...]"));
103 104 105 106
    int pooled_height = ctx->Attrs().Get<int>("pooled_height");
    int pooled_width = ctx->Attrs().Get<int>("pooled_width");
    float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");

107 108
    PADDLE_ENFORCE_GT(pooled_height,
                      0,
109 110
                      platform::errors::InvalidArgument(
                          "The pooled output height must be greater than 0"));
111 112
    PADDLE_ENFORCE_GT(pooled_width,
                      0,
113 114
                      platform::errors::InvalidArgument(
                          "The pooled output width must be greater than 0"));
115 116
    PADDLE_ENFORCE_GT(spatial_scale,
                      0.0f,
117 118
                      platform::errors::InvalidArgument(
                          "The spatial scale must greater than 0."));
119 120 121

    auto out_dims = input_dims;
    out_dims[0] = rois_dims[0];
122
    out_dims[1] = input_dims[1];
123 124
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;
125 126 127

    if (ctx->HasInput("BatchRoINums")) {
      auto rois_batch_index = ctx->GetInputDim("BatchRoINums");
128 129
      PADDLE_ENFORCE_EQ(rois_batch_index[0],
                        input_dims[0],
130 131 132 133
                        platform::errors::InvalidArgument(
                            "The length of BatchRoINums should equal to  "
                            "first dim of inputs(X)"));
    }
134 135 136 137
    ctx->SetOutputDim("Out", out_dims);
  }

 protected:
138
  phi::KernelKey GetExpectedKernelType(
139
      const framework::ExecutionContext& ctx) const override {
140 141
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
                          ctx.GetPlace());
142 143 144 145 146 147 148 149
  }
};

class PRROIPoolGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
150 151 152 153 154 155 156 157
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "prroi_pool");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")),
                   "Output",
                   framework::GradVarName("X"),
                   "prroi_pool");
158
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
159
    ctx->SetOutputDim(framework::GradVarName("ROIs"), ctx->GetInputDim("ROIs"));
160 161 162
  }

 protected:
163
  phi::KernelKey GetExpectedKernelType(
164
      const framework::ExecutionContext& ctx) const override {
165 166
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
                          ctx.GetPlace());
167 168 169
  }
};

H
hong 已提交
170 171
template <typename T>
class PRROIPoolGradMaker : public framework::SingleGradOpMaker<T> {
172
 public:
H
hong 已提交
173
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
174 175

 protected:
176
  void Apply(GradOpPtr<T> op) const override {
177
    op->SetType("prroi_pool_grad");
H
hong 已提交
178 179 180
    op->SetInput("X", this->Input("X"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("ROIs", this->Input("ROIs"));
181
    op->SetInput("BatchRoINums", this->Input("BatchRoINums"));
H
hong 已提交
182 183 184 185
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("ROIs"), this->InputGrad("ROIs"));
    op->SetAttrMap(this->Attrs());
186 187 188 189 190 191
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
192 193 194
REGISTER_OPERATOR(prroi_pool,
                  ops::PRROIPoolOp,
                  ops::PRROIPoolOpMaker,
H
hong 已提交
195 196
                  ops::PRROIPoolGradMaker<paddle::framework::OpDesc>,
                  ops::PRROIPoolGradMaker<paddle::imperative::OpBase>);
197
REGISTER_OPERATOR(prroi_pool_grad, ops::PRROIPoolGradOp);
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

PD_REGISTER_STRUCT_KERNEL(prroi_pool,
                          CPU,
                          ALL_LAYOUT,
                          ops::CPUPRROIPoolOpKernel,
                          float,
                          double,
                          int,
                          int64_t) {}
PD_REGISTER_STRUCT_KERNEL(prroi_pool_grad,
                          CPU,
                          ALL_LAYOUT,
                          ops::CPUPRROIPoolGradOpKernel,
                          float,
                          double,
                          int,
                          int64_t) {}