MergeModel.cpp 2.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>

#include "ParamUtil.h"
#include "Trainer.h"
X
Xin Pan 已提交
19
#include "paddle/legacy/pserver/ParameterServer2.h"
Y
Yu Yang 已提交
20
#include "paddle/utils/PythonUtil.h"
Z
zhangjinchao01 已提交
21

22
DEFINE_string(model_dir, "", "Directory for separated model files");
X
xzl 已提交
23
DEFINE_string(config_file, "", "Config file for the model");
24
DEFINE_string(model_file, "", "File for merged model file");
Z
zhangjinchao01 已提交
25 26 27 28 29

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

int main(int argc, char** argv) {
Y
Yiqun Liu 已提交
30 31 32
  initMain(argc, argv);
  initPython(argc, argv);

33 34 35 36 37 38 39
  if (FLAGS_model_dir.empty() || FLAGS_config_file.empty() ||
      FLAGS_model_file.empty()) {
    LOG(INFO) << "Usage: ./paddle_merge_model --model_dir=pass-00000 "
                 "--config_file=config.py --model_file=out.paddle";
    return 0;
  }

X
xzl 已提交
40
  string confFile = FLAGS_config_file;
41
#ifndef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
  FLAGS_use_gpu = false;
#endif
  auto config = std::make_shared<TrainerConfigHelper>(confFile);
  unique_ptr<GradientMachine> gradientMachine(GradientMachine::create(*config));
  gradientMachine->loadParameters(FLAGS_model_dir);

  ofstream os(FLAGS_model_file);

  string buf;
  config->getConfig().SerializeToString(&buf);
  int64_t size = buf.size();
  os.write((char*)&size, sizeof(size));
  CHECK(os) << "Fail to write to " << FLAGS_model_file;
  os.write(buf.data(), buf.size());
  vector<ParameterPtr>& parameters = gradientMachine->getParameters();
  for (auto& para : parameters) {
    para->save(os);
    CHECK(os) << "Fail to write to " << FLAGS_model_file;
  }
  os.close();

  return 0;
}