match_matrix_tensor_op.cc 13.8 KB
Newer Older
A
Aurelius84 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fstream>
#include <iomanip>
#include <iostream>
18
#include <memory>
A
Aurelius84 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include <vector>

#include "paddle/fluid/operators/match_matrix_tensor_op.h"
#include "paddle/fluid/operators/search_compute.h"

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

void MatchMatrixTensorOP::InferShape(framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    "X(Input) of MatchMatrix should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true,
                    "Y(Input) of MatchMatrix should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
                    "W(Input) of MatchMatrix should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                    "Out(Output) of MatchMatrix should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Tmp"), true,
                    "Tmp(Output) of MatchMatrix should not be null.");

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2,
                    "The rank of Input(X) can't be less than 2.");

  auto y_dims = ctx->GetInputDim("Y");
  PADDLE_ENFORCE_EQ(y_dims.size(), 2,
                    "The rank of Input(Y) can't be less than 2.");

  auto w_dims = ctx->GetInputDim("W");
  PADDLE_ENFORCE_EQ(w_dims.size(), 3UL, "W should be 3-D tensor");

  int dim_t = ctx->Attrs().Get<int>("dim_t");
  PADDLE_ENFORCE_EQ(w_dims[0], x_dims[1],
                    "W 's shape must satisfy: W[0] = X[1]");
  PADDLE_ENFORCE_EQ(w_dims[1], dim_t, "W 's shape must satisfy: W[1] = dim_t");
  PADDLE_ENFORCE_EQ(w_dims[2], y_dims[1],
                    "W 's shape must satisfy: W[2] = Y[1]");

60 61
  int64_t out_dim_0 = -1;
  int64_t tmp_dim_0 = -1;
A
Aurelius84 已提交
62 63
  if (ctx->IsRuntime()) {
    framework::Variable* x_var =
64
        BOOST_GET(framework::Variable*, ctx->GetInputVarPtrs("X")[0]);
A
Aurelius84 已提交
65 66 67 68 69 70 71 72 73 74
    const auto& x_lod = x_var->Get<LoDTensor>().lod();
    PADDLE_ENFORCE_EQ(x_lod.empty(), false, "The Input(X) must hold lod info.");
    const auto& x_lod_0 = x_lod[0];
    PADDLE_ENFORCE_GE(x_lod_0.size(), 2,
                      "The Input(X)'s lod info is corrupted.");
    PADDLE_ENFORCE_EQ(
        x_dims[0], static_cast<int64_t>(x_lod_0.back()),
        "The Input(X)'s lod info mismatches the actual tensor shape.");

    framework::Variable* y_var =
75
        BOOST_GET(framework::Variable*, ctx->GetInputVarPtrs("Y")[0]);
A
Aurelius84 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89
    const auto& y_lod = y_var->Get<LoDTensor>().lod();
    PADDLE_ENFORCE_EQ(y_lod.empty(), false, "The Input(Y) must hold lod info.");
    const auto& y_lod_0 = y_lod[0];
    PADDLE_ENFORCE_GE(y_lod_0.size(), 2,
                      "The Input(Y)'s lod info is corrupted.");
    PADDLE_ENFORCE_EQ(
        y_dims[0], static_cast<int64_t>(y_lod_0.back()),
        "The Input(Y)'s lod info mismatches the actual tensor shape.");

    PADDLE_ENFORCE_EQ(x_lod_0.size(), y_lod_0.size(),
                      "The Length of X and Y must be equal.");

    out_dim_0 = 0;
    for (size_t i = 1; i < x_lod_0.size(); i++) {
90 91
      int64_t x_len = x_lod_0[i] - x_lod_0[i - 1];
      int64_t y_len = y_lod_0[i] - y_lod_0[i - 1];
A
Aurelius84 已提交
92 93 94 95 96 97 98 99
      out_dim_0 += (x_len * y_len);
    }
    out_dim_0 *= dim_t;

    tmp_dim_0 = x_dims[0] * dim_t * x_dims[1];
  } else {
    // compile time
    framework::VarDesc* x_desc =
100
        BOOST_GET(framework::VarDesc*, ctx->GetInputVarPtrs("X")[0]);
A
Aurelius84 已提交
101 102
    PADDLE_ENFORCE_GE(x_desc->GetLoDLevel(), 1);
    framework::VarDesc* y_desc =
103
        BOOST_GET(framework::VarDesc*, ctx->GetInputVarPtrs("Y")[0]);
A
Aurelius84 已提交
104
    PADDLE_ENFORCE_GE(y_desc->GetLoDLevel(), 1);
105
    ctx->ShareLoD("X", "Out");
A
Aurelius84 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  }

  std::vector<int64_t> out_dims_vec{out_dim_0};
  out_dims_vec.push_back(1);
  std::vector<int64_t> tmp_dims_vec{tmp_dim_0};
  tmp_dims_vec.push_back(1);
  ctx->SetOutputDim("Out", framework::make_ddim(out_dims_vec));
  ctx->SetOutputDim("Tmp", framework::make_ddim(tmp_dims_vec));
}

void MatchMatrixTensorOpGrad::InferShape(
    framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    "Input(X) of SequencePadGradOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true,
                    "Input(Y) of SequencePadGradOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
                    "Input(W) of SequencePadGradOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                    "Input(Out@GRAD) of SequencePadGradOp should not be null.");

  if (ctx->HasOutput(framework::GradVarName("X"))) {
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
  }
  if (ctx->HasOutput(framework::GradVarName("Y"))) {
    ctx->SetOutputDim(framework::GradVarName("Y"), ctx->GetInputDim("Y"));
    ctx->ShareLoD("Y", /*->*/ framework::GradVarName("Y"));
  }
  if (ctx->HasOutput(framework::GradVarName("W"))) {
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
  }
}

void MatchMatrixTensorOpMaker::Make() {
  AddInput("X",
           "X (LoDTensor, default LoDTensor<float>) Input variable which "
           "should contain lod information.");
  AddInput("Y",
           "Y (LoDTensor, default LoDTensor<float>) Input variable which "
           "should contain lod information.");
  AddInput("W", "W (Tensor), The weight of X and Y.");
  AddAttr<int>("dim_t", "the dim of W").SetDefault(1);
  AddOutput("Out",
            "(LoDTensor, default LoDTensor<float>) Output variable which "
            "is X * W * Y");
  AddOutput("Tmp",
            "(LoDTensor, default LoDTensor<float>) tmp variable which is "
            "used for X * W");
  AddComment(R"DOC(
      Match Matrix Tensor Operator

      This operator calculate X * W * Y, only support 2-D for X and Y.
      the output is a level-1 LodTensor: 
        level_0: dim_t
      
      NOTE: only support 'float32' data type now.

    )DOC");
}

template <typename DeviceContext, typename T>
class CPUMatchMatrixTensorOPKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<LoDTensor>("X");
    auto* y = ctx.Input<LoDTensor>("Y");
    auto* w = ctx.Input<Tensor>("W");
    auto* out = ctx.Output<LoDTensor>("Out");
    auto* tmp = ctx.Output<LoDTensor>("Tmp");

    int dim_t = ctx.Attr<int>("dim_t");
178
    int64_t dim_in = x->dims()[1];
A
Aurelius84 已提交
179 180 181 182 183

    const auto& offset_l = x->lod()[0];
    const auto& offset_r = y->lod()[0];

    std::vector<size_t> top_offset;
184
    size_t top_size = 0;
A
Aurelius84 已提交
185 186
    top_offset.push_back(top_size);
    for (size_t b = 0; b < x->lod()[0].size() - 1; b++) {
187 188
      size_t len_l = offset_l[b + 1] - offset_l[b];
      size_t len_r = offset_r[b + 1] - offset_r[b];
A
Aurelius84 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
      top_size += dim_t * len_l * len_r;
      top_offset.push_back(top_size);
    }
    auto* out_data = out->mutable_data<T>(ctx.GetPlace());
    memset(out_data, 0.0, out->dims()[0] * out->dims()[1] * sizeof(T));

    auto* bottom_l_data = x->data<T>();
    auto* bottom_r_data = y->data<T>();
    auto* t_data = w->data<T>();
    auto* bottom_l_trans_data = tmp->mutable_data<T>(ctx.GetPlace());
    memset(bottom_l_trans_data, 0.0,
           tmp->dims()[0] * tmp->dims()[1] * sizeof(T));

    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);

    call_gemm(blas, CblasNoTrans, CblasNoTrans, x->dims()[0], dim_t * dim_in,
              dim_in, 1.0f, bottom_l_data, t_data, 0.0f, bottom_l_trans_data);

    for (size_t b = 0; b < x->lod()[0].size() - 1; b++) {
      for (int t = 0; t < dim_t; t++) {
209 210
        size_t len_l = offset_l[b + 1] - offset_l[b];
        size_t len_r = offset_r[b + 1] - offset_r[b];
A
Aurelius84 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        auto* top_data = out_data + top_offset[b] + t * len_l * len_r;
        const auto* l_t_data =
            bottom_l_trans_data + offset_l[b] * dim_t * dim_in + t * dim_in;
        const auto* r_data = bottom_r_data + offset_r[b] * dim_in;
        auto blas_2 = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
        call_gemm_with_lda(blas_2, CblasNoTrans, CblasTrans, len_l, len_r,
                           dim_in, 1.0f, l_t_data, r_data, 0.0f, top_data,
                           dim_t * dim_in);
      }
    }

    framework::LoD out_lod;
    out_lod.push_back(top_offset);

    out->set_lod(out_lod);
  }
};

template <typename DeviceContext, typename T>
class CPUMatchMatrixTensorOPGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<LoDTensor>("X");
    auto* y = ctx.Input<LoDTensor>("Y");
    auto* w = ctx.Input<Tensor>("W");
    auto* tmp = ctx.Input<LoDTensor>("Tmp");

    int dim_t = ctx.Attr<int>("dim_t");
239
    int64_t dim_in = x->dims()[1];
A
Aurelius84 已提交
240 241 242

    const auto& offset_l = x->lod()[0];
    const auto& offset_r = y->lod()[0];
243 244
    std::vector<size_t> top_offset;
    size_t top_size = 0;
A
Aurelius84 已提交
245 246
    top_offset.push_back(top_size);
    for (size_t b = 0; b < x->lod()[0].size() - 1; b++) {
247 248
      size_t len_l = offset_l[b + 1] - offset_l[b];
      size_t len_r = offset_r[b + 1] - offset_r[b];
A
Aurelius84 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
      top_size += dim_t * len_l * len_r;
      top_offset.push_back(top_size);
    }

    auto* bottom_l_data = x->data<T>();
    auto* bottom_r_data = y->data<T>();
    auto* bottom_l_trans_data = tmp->data<T>();

    auto* d_out = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* d_x = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    auto* d_y = ctx.Output<LoDTensor>(framework::GradVarName("Y"));

    Tensor tmp_grad;
    tmp_grad.Resize(tmp->dims());
    auto* d_tmp_data = tmp_grad.mutable_data<T>(ctx.GetPlace());
    auto* top_diff = d_out->data<T>();
    auto* bottom_l_diff = d_x->mutable_data<T>(ctx.GetPlace());
    auto* bottom_r_diff = d_y->mutable_data<T>(ctx.GetPlace());
    auto* bottom_l_trans_diff = const_cast<T*>(d_tmp_data);
    memset(bottom_l_diff, 0.0, x->dims()[0] * x->dims()[1] * sizeof(T));
    memset(bottom_r_diff, 0.0, y->dims()[0] * y->dims()[1] * sizeof(T));
    memset(bottom_l_trans_diff, 0.0,
           tmp->dims()[0] * tmp->dims()[1] * sizeof(T));

    for (size_t b = 0; b < x->lod()[0].size() - 1; b++) {
      for (int t = 0; t < dim_t; t++) {
275 276
        size_t len_l = offset_l[b + 1] - offset_l[b];
        size_t len_r = offset_r[b + 1] - offset_r[b];
A
Aurelius84 已提交
277

278 279
        for (size_t i = 0; i < len_l; i++) {
          for (size_t j = 0; j < len_r; j++) {
A
Aurelius84 已提交
280 281 282 283 284 285 286 287 288 289 290
            auto diff =
                top_diff[top_offset[b] + t * len_l * len_r + i * len_r + j];
            auto* l_trans_data = bottom_l_trans_data +
                                 (offset_l[b] + i) * dim_in * dim_t +
                                 t * dim_in;
            auto* l_trans_diff = bottom_l_trans_diff +
                                 (offset_l[b] + i) * dim_in * dim_t +
                                 t * dim_in;
            auto* r_data = bottom_r_data + (offset_r[b] + j) * dim_in;
            auto* r_diff = bottom_r_diff + (offset_r[b] + j) * dim_in;
            if (diff != 0.0) {
291 292
              axpy(r_data, l_trans_diff, dim_in, diff);
              axpy(l_trans_data, r_diff, dim_in, diff);
A
Aurelius84 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
            }
          }
        }
      }
    }

    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);

    auto* t_data = w->data<T>();
    auto* d_w = ctx.Output<Tensor>(framework::GradVarName("W"));
    auto* t_diff = d_w->mutable_data<T>(ctx.GetPlace());
    memset(t_diff, 0.0, w->dims()[0] * w->dims()[1] * w->dims()[2] * sizeof(T));
    // bottom_diff
    call_gemm(blas, CblasNoTrans, CblasTrans, x->dims()[0], dim_in,
              dim_t * dim_in, 1.0f, bottom_l_trans_diff, t_data, 1.0f,
              bottom_l_diff);

    // t_diff
    call_gemm(blas, CblasTrans, CblasNoTrans, dim_in, dim_t * dim_in,
              x->dims()[0], 1.0f, bottom_l_data, bottom_l_trans_diff, 1.0f,
              t_diff);
  }
};

317 318 319 320 321 322
template <typename T>
class MatchMatrixTensorGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
323
  void Apply(GradOpPtr<T> grad_op) const override {
324 325 326 327 328 329 330 331 332 333 334 335 336
    grad_op->SetType("match_matrix_tensor_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput("Y", this->Input("Y"));
    grad_op->SetInput("W", this->Input("W"));
    grad_op->SetInput("Tmp", this->Output("Tmp"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    grad_op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

A
Aurelius84 已提交
337 338 339 340
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
341 342 343
REGISTER_OPERATOR(
    match_matrix_tensor, ops::MatchMatrixTensorOP,
    ops::MatchMatrixTensorOpMaker,
344 345
    ops::MatchMatrixTensorGradOpMaker<paddle::framework::OpDesc>,
    ops::MatchMatrixTensorGradOpMaker<paddle::imperative::OpBase>);
A
Aurelius84 已提交
346 347 348 349 350 351 352 353 354
REGISTER_OPERATOR(match_matrix_tensor_grad, ops::MatchMatrixTensorOpGrad);

REGISTER_OP_CPU_KERNEL(match_matrix_tensor,
                       ops::CPUMatchMatrixTensorOPKernel<
                           paddle::platform::CPUDeviceContext, float>);

REGISTER_OP_CPU_KERNEL(match_matrix_tensor_grad,
                       ops::CPUMatchMatrixTensorOPGradKernel<
                           paddle::platform::CPUDeviceContext, float>);