flip_op.cu 5.9 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/flip_op.h"

#include <vector>
#include "paddle/fluid/memory/malloc.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using CUDADeviceContext = paddle::platform::CUDADeviceContext;

template <typename T>
__global__ void kernel_pointwise_flip_apply(const int N, const T* in_data,
                                            T* out_data, int dim0, int stride0,
                                            int dim1, int flip_dim) {
  for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < N;
       idx += gridDim.x * blockDim.x) {
    int dst_offset = 0;
    if (flip_dim == 0) {
      // flip 1st dim
      dst_offset = (dim0 - 1 - idx / stride0) * stride0 + idx % stride0;
    } else {
      // flip last dim
      dst_offset = idx / stride0 * stride0 + (dim1 - 1 - idx % stride0);
    }
    out_data[dst_offset] = in_data[idx];
  }
}

template <typename T>
__global__ void flip_cuda_kernel(const int N, const T* in_data, T* out_data,
                                 int64_t* x_shape, int64_t* x_stride,
                                 int* flip_dims, int flip_dims_size,
                                 int total_dims) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx >= N) {
    return;
  }

  int cur_indices = idx, rem = 0, dst_offset = 0;
  for (int i = 0; i < total_dims; ++i) {
    int64_t temp = cur_indices;
    cur_indices = cur_indices / x_stride[i];
    rem = temp - cur_indices * x_stride[i];
    // flip the indices if it is in flip_dims
    for (int j = 0; j < flip_dims_size; ++j) {
      if (i == flip_dims[j]) {
        cur_indices = x_shape[i] - 1 - cur_indices;
      }
    }
    dst_offset += cur_indices * x_stride[i];
    cur_indices = rem;
  }
  out_data[idx] = in_data[dst_offset];
}

template <typename T>
class FlipKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
76
    const auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
W
Wilber 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    auto cplace = platform::CPUPlace();
    auto& dev_ctx = ctx.template device_context<CUDADeviceContext>();

    const Tensor* x = ctx.Input<Tensor>("X");
    Tensor* out = ctx.Output<Tensor>("Out");
    auto* in_data = x->data<T>();
    auto* out_data = out->mutable_data<T>(ctx.GetPlace());
    auto flip_dims = ctx.template Attr<std::vector<int>>("dims");

    const int flip_dims_size = static_cast<int>(flip_dims.size());
    auto x_dims = x->dims();
    const int total_dims = x_dims.size();
    const int N = x->numel();

    int block_size = 512;
    dim3 dim_block(block_size);
    dim3 dim_grid((N + block_size - 1) / block_size);

    for (size_t i = 0; i < flip_dims.size(); ++i) {
      if (flip_dims[i] < 0) {
        flip_dims[i] += total_dims;
      }
    }

    auto x_stride = framework::stride(x_dims);
    std::vector<int64_t> x_dims_v = framework::vectorize(x_dims);
    std::vector<int64_t> x_stride_v = framework::vectorize(x_stride);

    // wrap high-dims to 2-dims
    if (flip_dims_size == 1 &&
        (flip_dims[0] == 0 || flip_dims[0] == total_dims - 1)) {
      int dim0 = 1, dim1 = 1;
      int stride0 = 1;
      if (flip_dims[0] == 0) {
        dim0 = x_dims_v[0];
        stride0 = x_stride_v[0];
        for (size_t i = 1; i < total_dims; ++i) {
          dim1 *= x_dims_v[i];
        }
      } else {
        dim1 = x_dims_v[total_dims - 1];
        for (size_t i = 0; i < total_dims - 1; ++i) {
          dim0 *= x_dims_v[i];
        }
        stride0 *= x_dims_v[total_dims - 1];
      }
      kernel_pointwise_flip_apply<
          T><<<dim_grid, dim_block, 0, ctx.cuda_device_context().stream()>>>(
          N, in_data, out_data, dim0, stride0, dim1, flip_dims[0]);
    }

    int bytes = total_dims * sizeof(int64_t);
    auto x_strides_array_tmp = memory::Alloc(dev_ctx, bytes);
    int64_t* x_strides_array_gpu =
        reinterpret_cast<int64_t*>(x_strides_array_tmp->ptr());
    memory::Copy(gplace, x_strides_array_gpu, cplace, x_stride_v.data(), bytes,
                 dev_ctx.stream());

    auto x_shape_array_tmp = memory::Alloc(dev_ctx, bytes);
    int64_t* x_shape_array_gpu =
        reinterpret_cast<int64_t*>(x_shape_array_tmp->ptr());
    memory::Copy(gplace, x_shape_array_gpu, cplace, x_dims_v.data(), bytes,
                 dev_ctx.stream());

    bytes = flip_dims_size * sizeof(int);
    auto flip_dims_array_tmp = memory::Alloc(dev_ctx, bytes);
    int* flip_dims_array_gpu =
        reinterpret_cast<int*>(flip_dims_array_tmp->ptr());
    memory::Copy(gplace, flip_dims_array_gpu, cplace, flip_dims.data(), bytes,
                 dev_ctx.stream());

    flip_cuda_kernel<
        T><<<dim_grid, dim_block, 0, ctx.cuda_device_context().stream()>>>(
        N, in_data, out_data, x_shape_array_gpu, x_strides_array_gpu,
        flip_dims_array_gpu, flip_dims_size, total_dims);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
    flip, ops::FlipKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FlipKernel<paddle::platform::CUDADeviceContext, double>,
    ops::FlipKernel<paddle::platform::CUDADeviceContext, plat::float16>,
    ops::FlipKernel<paddle::platform::CUDADeviceContext, int>,
    ops::FlipKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::FlipKernel<paddle::platform::CUDADeviceContext, bool>);