mixed_vector.h 15.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15 16

#pragma once

17
#include <algorithm>
D
dzhwinter 已提交
18
#include <initializer_list>
19
#include <memory>
Y
Yu Yang 已提交
20
#include <mutex>  // NOLINT
21
#include <utility>
D
dzhwinter 已提交
22
#include <vector>
W
wanghuancoder 已提交
23 24

#include "glog/logging.h"
25
#include "paddle/fluid/framework/details/cow_ptr.h"
26
#include "paddle/fluid/memory/malloc.h"
27
#include "paddle/fluid/memory/memcpy.h"
28
#include "paddle/fluid/platform/device_context.h"
29 30
#include "paddle/utils/none.h"
#include "paddle/utils/optional.h"
Y
Yu Yang 已提交
31

D
dzhwinter 已提交
32 33 34
namespace paddle {
namespace framework {

35
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yu Yang 已提交
36 37
// Vector<T> implements the std::vector interface, and can get Data or
// MutableData from any place. The data will be synced implicitly inside.
D
dzhwinter 已提交
38
template <typename T>
Y
Yu Yang 已提交
39
class Vector {
D
dzhwinter 已提交
40
 public:
Y
Yu Yang 已提交
41
  using value_type = T;
42 43
  using iterator = typename std::vector<T>::iterator;
  using const_iterator = typename std::vector<T>::const_iterator;
C
chengduoZH 已提交
44

45 46 47 48 49 50 51 52 53 54 55
 private:
  // The actual class to implement vector logic
  class VectorData {
   public:
    VectorData() : flag_(kDataInCPU) {}
    VectorData(size_t count, const T &value)
        : cpu_(count, value), flag_(kDataInCPU) {}
    VectorData(std::initializer_list<T> init) : cpu_(init), flag_(kDataInCPU) {}
    template <typename U>
    explicit VectorData(const std::vector<U> &dat)
        : cpu_(dat), flag_(kDataInCPU) {}
Y
Yu Yang 已提交
56
    ~VectorData() {}
57 58 59 60 61 62

    VectorData(const VectorData &o) {
      o.ImmutableCPU();
      cpu_ = o.cpu_;
      flag_ = kDataInCPU;
    }
C
chengduoZH 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    VectorData &operator=(const VectorData &o) {
      o.ImmutableCPU();
      cpu_ = o.cpu_;
      flag_ = kDataInCPU;
      return *this;
    }

    T &operator[](size_t i) {
      MutableCPU();
      return cpu_[i];
    }

    const T &operator[](size_t i) const {
      ImmutableCPU();
      return cpu_[i];
    }

    size_t size() const { return cpu_.size(); }

    iterator begin() {
      MutableCPU();
      return cpu_.begin();
    }

    iterator end() {
      MutableCPU();
      return cpu_.end();
    }

    T &front() {
      MutableCPU();
      return cpu_.front();
    }

    T &back() {
      MutableCPU();
      return cpu_.back();
    }

    const_iterator begin() const {
      ImmutableCPU();
      return cpu_.begin();
    }

    const_iterator end() const {
      ImmutableCPU();
      return cpu_.end();
    }

    const T &back() const {
      ImmutableCPU();
      return cpu_.back();
    }

    T *data() { return &(*this)[0]; }

    const T *data() const { return &(*this)[0]; }

    const T &front() const {
      ImmutableCPU();
      return cpu_.front();
    }

    // assign this from iterator.
    // NOTE: the iterator must support `end-begin`
    template <typename Iter>
    void assign(Iter begin, Iter end) {
      MutableCPU();
      cpu_.assign(begin, end);
    }

    // push_back. If the previous capacity is not enough, the memory will
    // double.
    void push_back(T elem) {
      MutableCPU();
      cpu_.push_back(elem);
    }

    // extend a vector by iterator.
    // NOTE: the iterator must support end-begin
    template <typename It>
    void Extend(It begin, It end) {
      MutableCPU();
      auto out_it = std::back_inserter<std::vector<T>>(this->cpu_);
      std::copy(begin, end, out_it);
    }

    // resize the vector
    void resize(size_t size) {
      MutableCPU();
      cpu_.resize(size);
    }

    // get cuda ptr. immutable
    const T *CUDAData(platform::Place place) const {
159 160 161 162
      PADDLE_ENFORCE_EQ(
          platform::is_gpu_place(place), true,
          platform::errors::Unavailable(
              "Place mismatch, CUDA Data must be on CUDA place."));
163
      ImmutableCUDA(place);
164
      return reinterpret_cast<T *>(gpu_->ptr());
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    }

    // get cuda ptr. mutable
    T *CUDAMutableData(platform::Place place) {
      const T *ptr = CUDAData(place);
      flag_ = kDirty | kDataInCUDA;
      return const_cast<T *>(ptr);
    }

    // clear
    void clear() {
      cpu_.clear();
      flag_ = kDirty | kDataInCPU;
    }

    size_t capacity() const { return cpu_.capacity(); }

    // reserve data
Y
Yu Yang 已提交
183
    void reserve(size_t size) const { cpu_.reserve(size); }
184 185 186 187 188 189 190 191 192 193 194 195 196

    // implicit cast operator. Vector can be cast to std::vector implicitly.
    operator std::vector<T>() const {
      ImmutableCPU();
      return cpu_;
    }

    bool operator==(const VectorData &other) const {
      ImmutableCPU();
      other.ImmutableCPU();
      return cpu_ == other.cpu_;
    }

Y
Yu Yang 已提交
197 198
    std::mutex &Mutex() const { return mtx_; }

199
    paddle::optional<platform::CUDAPlace> CUDAPlace() const {
200
      return gpu_ == nullptr
201 202
                 ? paddle::none
                 : paddle::optional<platform::CUDAPlace>(
203
                       BOOST_GET_CONST(platform::CUDAPlace, gpu_->place()));
Y
Yu Yang 已提交
204 205
    }

206 207 208 209 210 211 212 213 214 215
   private:
    enum DataFlag {
      kDataInCPU = 0x01,
      kDataInCUDA = 0x02,
      // kDirty means the data has been changed in one device.
      kDirty = 0x10
    };

    void CopyToCPU() const {
      // COPY GPU Data To CPU
Y
Yu Yang 已提交
216
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
217
          platform::DeviceContextPool::Instance().Get(gpu_->place()));
Y
Yu Yang 已提交
218
      auto stream = dev_ctx->stream();
219
      void *src = gpu_->ptr();
220
      void *dst = cpu_.data();
P
peizhilin 已提交
221
      paddle::memory::Copy(platform::CPUPlace(), dst, CUDAPlace().get(), src,
222
                           gpu_memory_size_, stream);
Y
Yu Yang 已提交
223
      dev_ctx->Wait();
224 225 226 227 228
    }

    void MutableCPU() {
      if (IsInCUDA() && IsDirty()) {
        CopyToCPU();
229
      }
230
      flag_ = kDirty | kDataInCPU;
231
    }
C
chengduoZH 已提交
232

233 234 235 236 237 238
    void ImmutableCUDA(platform::Place place) const {
      if (IsDirty()) {
        if (IsInCPU()) {
          CopyCPUDataToCUDA(place);
          UnsetFlag(kDirty);
          SetFlag(kDataInCUDA);
239
        } else if (IsInCUDA() && !(place == gpu_->place())) {
240 241
          PADDLE_THROW(
              platform::errors::Unavailable("Unexpected data place mismatch."));
242 243 244 245 246 247 248 249 250 251
          // Still dirty
        } else {
          // Dirty && DataInCUDA && Device is same
          // Do nothing
        }
      } else {
        if (!IsInCUDA()) {
          // Even data is not dirty. However, data is not in CUDA. Copy data.
          CopyCPUDataToCUDA(place);
          SetFlag(kDataInCUDA);
252
        } else if (!(place == gpu_->place())) {
253 254
          PADDLE_THROW(
              platform::errors::Unavailable("Unexpected data place mismatch."));
255 256 257 258 259
        } else {
          // Not Dirty && DataInCUDA && Device is same
          // Do nothing.
        }
      }
260
    }
261 262 263

    void CopyCPUDataToCUDA(const platform::Place &place) const {
      void *src = cpu_.data();
264 265
      gpu_memory_size_ = cpu_.size() * sizeof(T);
      gpu_ = memory::Alloc(place, gpu_memory_size_);
266
      void *dst = gpu_->ptr();
Y
Yu Yang 已提交
267 268 269
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place));
      auto stream = dev_ctx->stream();
P
peizhilin 已提交
270
      paddle::memory::Copy(CUDAPlace().get(), dst, platform::CPUPlace(), src,
271
                           gpu_memory_size_, stream);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    }

    void ImmutableCPU() const {
      if (IsDirty() && !IsInCPU()) {  // If data has been changed in CUDA, or
                                      // CPU has no data.
        CopyToCPU();
        UnsetFlag(kDirty);
      }
      SetFlag(kDataInCPU);
    }

    void UnsetFlag(int flag) const { flag_ &= ~flag; }
    void SetFlag(int flag) const { flag_ |= flag; }

    bool IsDirty() const { return flag_ & kDirty; }

    bool IsInCUDA() const { return flag_ & kDataInCUDA; }

    bool IsInCPU() const { return flag_ & kDataInCPU; }

    mutable std::vector<T> cpu_;
P
peizhilin 已提交
293
    mutable paddle::memory::AllocationPtr gpu_;
294
    mutable size_t gpu_memory_size_{0};
295
    mutable int flag_;
Y
Yu Yang 已提交
296 297

    mutable std::mutex mtx_;
298 299 300 301 302 303 304 305 306 307 308 309
  };

 public:
  // Default ctor. Create empty Vector
  Vector() : m_(new VectorData()) {}

  // Fill vector with value. The vector size is `count`.
  explicit Vector(size_t count, const T &value = T())
      : m_(new VectorData(count, value)) {}

  // Ctor with init_list
  Vector(std::initializer_list<T> init) : m_(new VectorData(init)) {}
Y
Yu Yang 已提交
310

Y
Yu Yang 已提交
311
  // implicit cast from std::vector.
Y
Yu Yang 已提交
312
  template <typename U>
313
  Vector(const std::vector<U> &dat) : m_(new VectorData(dat)) {  // NOLINT
Y
Yu Yang 已提交
314 315
  }

Y
Yu Yang 已提交
316
  // Copy ctor
317
  Vector(const Vector<T> &other) { m_ = other.m_; }
Y
Yu Yang 已提交
318

Y
Yu Yang 已提交
319
  // Copy operator
320
  Vector<T> &operator=(const Vector<T> &other) {
321
    m_ = other.m_;
Y
Yu Yang 已提交
322 323 324
    return *this;
  }

Y
Yu Yang 已提交
325
  // Move ctor
326
  Vector(Vector<T> &&other) { m_ = std::move(other.m_); }
D
dzhwinter 已提交
327

Y
Yu Yang 已提交
328
  // CPU data access method. Mutable.
Y
Yu Yang 已提交
329
  T &operator[](size_t i) { return (*m_.MutableData())[i]; }
Y
Yu Yang 已提交
330

Y
Yu Yang 已提交
331
  // CPU data access method. Immutable.
Y
Yu Yang 已提交
332
  const T &operator[](size_t i) const { return m_.Data()[i]; }
Y
Yu Yang 已提交
333

Y
Yu Yang 已提交
334
  // std::vector iterator methods. Based on CPU data access method
Y
Yu Yang 已提交
335
  size_t size() const { return m_.Data().size(); }
Y
Yu Yang 已提交
336

Y
Yu Yang 已提交
337
  iterator begin() { return m_.MutableData()->begin(); }
Y
Yu Yang 已提交
338

Y
Yu Yang 已提交
339
  iterator end() { return m_.MutableData()->end(); }
Y
Yu Yang 已提交
340

Y
Yu Yang 已提交
341
  T &front() { return m_.MutableData()->front(); }
Y
Yu Yang 已提交
342

Y
Yu Yang 已提交
343
  T &back() { return m_.MutableData()->back(); }
Y
Yu Yang 已提交
344

Y
Yu Yang 已提交
345
  const_iterator begin() const { return m_.Data().begin(); }
Y
Yu Yang 已提交
346

Y
Yu Yang 已提交
347
  const_iterator end() const { return m_.Data().end(); }
348

349
  const_iterator cbegin() const { return begin(); }
Y
Yu Yang 已提交
350

351
  const_iterator cend() const { return end(); }
Y
Yu Yang 已提交
352

Y
Yu Yang 已提交
353
  const T &back() const { return m_.Data().back(); }
Y
Yu Yang 已提交
354

Y
Yu Yang 已提交
355
  T *data() { return m_.MutableData()->data(); }
Y
Yu Yang 已提交
356

Y
Yu Yang 已提交
357
  const T *data() const { return m_.Data().data(); }
Y
Yu Yang 已提交
358

Y
Yu Yang 已提交
359
  const T &front() const { return m_.Data().front(); }
Y
Yu Yang 已提交
360
  // end of std::vector iterator methods
Y
Yu Yang 已提交
361

Y
Yu Yang 已提交
362 363
  // assign this from iterator.
  // NOTE: the iterator must support `end-begin`
Y
Yu Yang 已提交
364 365
  template <typename Iter>
  void assign(Iter begin, Iter end) {
Y
Yu Yang 已提交
366
    m_.MutableData()->assign(begin, end);
Y
Yu Yang 已提交
367 368
  }

Y
Yu Yang 已提交
369 370
  // push_back. If the previous capacity is not enough, the memory will
  // double.
Y
Yu Yang 已提交
371
  void push_back(T elem) { m_.MutableData()->push_back(elem); }
D
dzhwinter 已提交
372

Y
Yu Yang 已提交
373 374 375 376
  // extend a vector by iterator.
  // NOTE: the iterator must support end-begin
  template <typename It>
  void Extend(It begin, It end) {
Y
Yu Yang 已提交
377
    m_.MutableData()->Extend(begin, end);
Y
Yu Yang 已提交
378 379 380
  }

  // resize the vector
C
refine  
chengduoZH 已提交
381
  void resize(size_t size) {
382
    if (m_.Data().size() != size) {
Y
Yu Yang 已提交
383
      m_.MutableData()->resize(size);
C
refine  
chengduoZH 已提交
384 385
    }
  }
D
dzhwinter 已提交
386

Y
Yu Yang 已提交
387
  // get cuda ptr. immutable
C
refine  
chengduoZH 已提交
388
  const T *CUDAData(platform::Place place) const {
Y
Yu Yang 已提交
389 390 391 392
    {
      auto &mtx = m_.Data().Mutex();
      std::lock_guard<std::mutex> guard(mtx);
      auto cuda_place = m_.Data().CUDAPlace();
393
      if (cuda_place == paddle::none ||
394
          cuda_place == BOOST_GET(platform::CUDAPlace, place)) {
Y
Yu Yang 已提交
395 396 397 398 399 400
        return m_.Data().CUDAData(place);
      }
    }
    // If m_ contains CUDAData in a different place. Detach manually.
    m_.Detach();
    return CUDAData(place);
C
refine  
chengduoZH 已提交
401
  }
D
dzhwinter 已提交
402

Y
Yu Yang 已提交
403
  // get cuda ptr. mutable
404
  T *CUDAMutableData(platform::Place place) {
Y
Yu Yang 已提交
405 406 407 408
    {
      auto &mtx = m_.Data().Mutex();
      std::lock_guard<std::mutex> guard(mtx);
      auto cuda_place = m_.Data().CUDAPlace();
409
      if (cuda_place == paddle::none ||
410
          cuda_place == BOOST_GET(platform::CUDAPlace, place)) {
Y
Yu Yang 已提交
411 412 413 414 415 416
        return m_.MutableData()->CUDAMutableData(place);
      }
    }
    // If m_ contains CUDAData in a different place. Detach manually.
    m_.Detach();
    return CUDAMutableData(place);
Y
Yu Yang 已提交
417 418
  }

Y
Yu Yang 已提交
419
  // clear
Y
Yu Yang 已提交
420
  void clear() { m_.MutableData()->clear(); }
Y
Yu Yang 已提交
421

Y
Yu Yang 已提交
422
  size_t capacity() const { return m_.Data().capacity(); }
Y
Yu Yang 已提交
423

Y
Yu Yang 已提交
424
  // reserve data
Y
Yu Yang 已提交
425
  void reserve(size_t size) { m_.Data().reserve(size); }
Y
Yu Yang 已提交
426

Y
Yu Yang 已提交
427
  // the unify method to access CPU or CUDA data. immutable.
428
  const T *Data(platform::Place place) const {
Y
Yu Yang 已提交
429 430 431
    if (platform::is_gpu_place(place)) {
      return CUDAData(place);
    } else {
432
      return data();
Y
Yu Yang 已提交
433 434 435
    }
  }

Y
Yu Yang 已提交
436
  // the unify method to access CPU or CUDA data. mutable.
437
  T *MutableData(platform::Place place) {
Y
Yu Yang 已提交
438 439
    if (platform::is_gpu_place(place)) {
      return CUDAMutableData(place);
440
    } else {
Y
Yu Yang 已提交
441
      return data();
442 443 444
    }
  }

Y
Yu Yang 已提交
445
  // implicit cast operator. Vector can be cast to std::vector implicitly.
Y
Yu Yang 已提交
446
  operator std::vector<T>() const { return m_.Data(); }
Y
Yu Yang 已提交
447

448
  bool operator==(const Vector<T> &other) const {
Y
Yu Yang 已提交
449
    if (size() != other.size()) return false;
450 451 452
    auto it1 = cbegin();
    auto it2 = other.cbegin();
    for (; it1 < cend(); ++it1, ++it2) {
Y
Yu Yang 已提交
453 454 455 456 457 458
      if (*it1 != *it2) {
        return false;
      }
    }
    return true;
  }
D
dzhwinter 已提交
459

460
  const void *Handle() const { return &m_.Data(); }
461

462 463
 private:
  // Vector is an COW object.
Y
Yu Yang 已提交
464
  mutable details::COWPtr<VectorData> m_;
Y
Yu Yang 已提交
465
};
D
dzhwinter 已提交
466

467 468 469 470 471 472
#else  // PADDLE_WITH_CUDA

template <typename T>
class CPUVector : public std::vector<T, std::allocator<T>> {
 public:
  CPUVector() : std::vector<T>() {}
473
  CPUVector(size_t count, const T &value = T())  // NOLINT
474 475
      : std::vector<T>(count, value) {}
  CPUVector(std::initializer_list<T> init) : std::vector<T>(init) {}
476 477
  CPUVector(const std::vector<T> &other) : std::vector<T>(other) {}  // NOLINT
  CPUVector(const CPUVector<T> &other) : std::vector<T>(other) {}
478
  CPUVector(CPUVector<T> &&other) : std::vector<T>(std::move(other)) {}
479
  CPUVector(std::vector<T> &&other)  // NOLINT
480
      : std::vector<T>(std::move(other)) {}
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
  CPUVector &operator=(const CPUVector &other) {
    this->assign(other.begin(), other.end());
    return *this;
  }
  CPUVector &operator=(const std::vector<T> &other) {
    this->assign(other.begin(), other.end());
    return *this;
  }

  friend std::ostream &operator<<(std::ostream &os, const CPUVector<T> &other) {
    std::stringstream ss;
    for (auto v : other) {
      os << v << " ";
    }
    return os;
  }

  T &operator[](size_t id) { return this->at(id); }

  const T &operator[](size_t id) const { return this->at(id); }

  template <typename D>
  void Extend(const D &begin, const D &end) {
    this->reserve(this->size() + size_t(end - begin));
    this->insert(this->end(), begin, end);
  }
S
sneaxiy 已提交
507 508

  const T *CUDAData(platform::Place place) const {
509 510
    PADDLE_THROW(platform::errors::Unavailable(
        "Vector::CUDAData() method is not supported in CPU-only version."));
S
sneaxiy 已提交
511 512 513
  }

  T *CUDAMutableData(platform::Place place) {
514
    PADDLE_THROW(platform::errors::Unavailable(
S
sneaxiy 已提交
515
        "Vector::CUDAMutableData() method is not supported in CPU-only "
516
        "version."));
S
sneaxiy 已提交
517 518 519
  }

  const T *Data(platform::Place place) const {
520 521 522 523
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(place), true,
        platform::errors::Unavailable(
            "Vector::Data() method is not supported when not in CPUPlace."));
S
sneaxiy 已提交
524 525 526 527
    return this->data();
  }

  T *MutableData(platform::Place place) {
528 529 530 531
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(place), true,
        platform::errors::Unavailable("Vector::MutableData() method is not "
                                      "supported when not in CPUPlace."));
S
sneaxiy 已提交
532 533 534 535
    return this->data();
  }

  const void *Handle() const { return static_cast<const void *>(this); }
536 537 538 539 540 541 542 543
};

template <typename T>
using Vector = CPUVector<T>;

#endif  // PADDLE_WITH_CUDA

};  // namespace framework
D
dzhwinter 已提交
544
}  // namespace paddle