test_dist_base.py 62.4 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import argparse
16
import ast
X
Xin Pan 已提交
17
import os
W
Wu Yi 已提交
18
import pickle
19
import random
K
Kim Yann 已提交
20
import socket
21 22 23
import subprocess
import sys
import tempfile
24
import time
25
import unittest
K
Kim Yann 已提交
26
from contextlib import closing
27 28

import numpy as np
29 30

import paddle
31
from paddle import fluid
32 33 34
from paddle.distributed.fleet.meta_optimizers import (
    RawProgramOptimizer as RawProgram,
)
35
from paddle.fluid import compiler
36
from paddle.incubate.distributed.fleet import role_maker
meteor135's avatar
meteor135 已提交
37 38 39 40
from paddle.incubate.distributed.fleet.collective import (
    DistributedStrategy,
    fleet,
)
41

Y
Yan Xu 已提交
42
RUN_STEP = 5
43
DEFAULT_BATCH_SIZE = 2
44
DIST_UT_PORT = 0
45

T
typhoonzero 已提交
46

S
sneaxiy 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
def remove_glog_envs(envs):
    if not envs:
        return envs

    glog_envs = ['GLOG_v', 'GLOG_logtostderr', 'GLOG_vmodule']
    envs = dict(envs)
    for env in glog_envs:
        if env in envs:
            del envs[env]
    return envs


def get_dump_file(rank):
    return f"./out_dump_{os.getpid()}_{rank}.pickled"


def modify_envs(envs, rank=0):
    if not envs:
        envs = {}
    envs = remove_glog_envs(envs)
    dump_file = get_dump_file(rank)
    envs['DUMP_FILE'] = dump_file
    if os.path.exists(dump_file):
        os.remove(dump_file)
    return envs
72 73


TaoTao Li's avatar
TaoTao Li 已提交
74 75 76 77 78 79
def dump_output(x):
    path = os.environ['DUMP_FILE']
    with open(path, 'wb') as f:
        pickle.dump(x, f)


S
sneaxiy 已提交
80 81
def load_and_remove_dump_file(rank=0):
    path = get_dump_file(rank)
TaoTao Li's avatar
TaoTao Li 已提交
82 83 84 85 86 87
    with open(path, 'rb') as f:
        out = pickle.load(f)
    os.remove(path)
    return out


88
def print_to_err(class_name, log_str):
89 90
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
91
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
92 93


94 95 96 97
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
def _insert_comm_op(opt, loss, build_strategy=None):
    opt = RawProgram(opt)
    role = paddle.distributed.fleet.base.role_maker.PaddleCloudRoleMaker(
        is_collective=True
    )
    strategy = paddle.distributed.fleet.DistributedStrategy()
    if build_strategy is not None:
        strategy.build_strategy = build_strategy
    opt._set_basic_info(loss, role, opt, strategy)

    # following code is a copy of RawProgramOptimizer.minimize except init_comm_group
    opt.endpoints = opt.role_maker._get_trainer_endpoints()
    opt.current_endpoint = opt.endpoints[opt.role_maker._worker_index()]
    opt.rank = opt.role_maker._worker_index()
    opt.nranks = opt.role_maker._worker_num()
    startup_program = paddle.static.default_startup_program()
    opt.startup_program = startup_program

    block = loss.block
    program = block.program
    opt.main_program = program

    optimize_ops, params_grads = opt.inner_opt.minimize(loss, startup_program)

    opt.main_program = program
    if opt.nranks > 1:
        opt._transpile_main_program(loss)


127
class TestDistRunnerBase:
128 129 130 131 132 133 134 135
    def get_model(
        self,
        batch_size=DEFAULT_BATCH_SIZE,
        lr=0.1,
        single_device=False,
        use_dgc=False,
        dist_strategy=None,
    ):
T
typhoonzero 已提交
136
        raise NotImplementedError(
137 138
            "get_model should be implemented by child classes."
        )
T
typhoonzero 已提交
139

140
    @staticmethod
141 142 143 144 145 146 147 148 149 150 151
    def get_transpiler(
        trainer_id,
        main_program,
        pserver_endpoints,
        trainers,
        sync_mode,
        dc_asgd=False,
        current_endpoint=None,
        nccl_comm_num=1,
        hogwild_mode=False,
    ):
T
typhoonzero 已提交
152
        # NOTE: import fluid until runtime, or else forking processes will cause error.
153
        config = paddle.distributed.transpiler.DistributeTranspilerConfig()
W
Wu Yi 已提交
154
        config.enable_dc_asgd = dc_asgd
155
        config.sync_mode = sync_mode
T
tangwei12 已提交
156 157
        config.runtime_split_send_recv = hogwild_mode

158 159
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
160
        # config.runtime_split_send_recv = True
161
        t = paddle.distributed.transpiler.DistributeTranspiler(config=config)
162 163 164 165 166 167 168 169
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
            trainers=trainers,
            sync_mode=sync_mode,
            current_endpoint=current_endpoint,
        )
T
typhoonzero 已提交
170 171
        return t

172 173
    @staticmethod
    def get_lr_scheduler(program):
174 175
        lr_scheduler = None
        if hasattr(program, 'lr_scheduler'):
176
            from paddle.optimizer.lr import LRScheduler
177

178 179 180
            lr_scheduler = program.lr_scheduler
            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
        return lr_scheduler
181

W
Wu Yi 已提交
182
    def run_pserver(self, args):
W
Wu Yi 已提交
183
        self.lr = args.lr
184
        self.get_model(batch_size=args.batch_size)
185
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
186

187 188 189 190 191 192 193 194 195
        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild,
        )
W
Wu Yi 已提交
196
        pserver_prog = t.get_pserver_program(args.current_endpoint)
197 198 199
        startup_prog = t.get_startup_program(
            args.current_endpoint, pserver_prog
        )
Y
Yancey1989 已提交
200

T
typhoonzero 已提交
201 202 203
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
204
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
205
        exe.run(pserver_prog)
206
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
207

208 209 210 211
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
212 213 214 215 216 217 218 219 220 221 222
        (
            test_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
            data_loader,
        ) = self.get_model(
            batch_size=args.batch_size, dist_strategy=dist_strategy
        )
223 224 225 226 227 228 229 230 231 232 233 234 235

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
236 237

        main_program = fluid.default_main_program()
238
        lr_scheduler = self.get_lr_scheduler(main_program)
239
        for i in range(RUN_STEP):
240
            loss = exe.run(main_program, fetch_list=[avg_cost])
241 242 243
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
244 245
            if lr_scheduler is not None:
                lr_scheduler.step()
246

247
        data_loader.reset()
248 249
        print_to_err(type(self).__name__, "trainer run finished")

TaoTao Li's avatar
TaoTao Li 已提交
250
        dump_output(out_losses)
251

252 253 254 255 256 257 258 259 260 261 262
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

263 264 265 266 267 268 269 270
        (
            test_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
        ) = self.get_model(batch_size=args.batch_size)
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
288 289
            var
            for var in fluid.default_main_program().global_block().vars.values()
290 291 292 293 294 295 296 297 298 299 300 301 302
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
303 304 305 306
            if (
                paddle.distributed.get_world_size() == 1
                and args.update_method == 'gloo'
            ):  # Gloo single mode
X
xiongkun 已提交
307 308 309
                return origin_batch

            elif args.update_method != "local" and args.use_reader_alloc:
310 311 312 313 314 315 316 317 318 319
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
320
        for i in range(RUN_STEP):
321 322 323 324 325
            (loss,) = exe.run(
                fluid.default_main_program(),
                fetch_list=[avg_cost.name],
                feed=feeder.feed(get_data()),
            )
326
            out_losses.append(float(loss))
327 328
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
329
        print_to_err(type(self).__name__, f"dist losses: {out_losses}")
330

TaoTao Li's avatar
TaoTao Li 已提交
331
        dump_output(out_losses)
332

333 334
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
335 336 337 338 339 340 341 342

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
343
        dist_strategy.fuse_memory_size = 1  # MB
344
        dist_strategy.fuse_laryer_size = 1
345 346 347 348
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
349 350
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
351 352 353

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
354
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
355 356
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
357

358 359 360 361 362 363 364 365 366 367
        (
            test_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
        ) = self.get_model(
            batch_size=args.batch_size, dist_strategy=dist_strategy
        )
368 369 370 371

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

372 373 374 375 376 377 378 379 380 381
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
382 383 384 385 386 387

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
388 389
            var
            for var in trainer_prog.global_block().vars.values()
390 391 392
            if var.is_data
        ]

393 394 395 396 397 398 399
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

400 401 402 403 404 405 406 407 408 409 410 411 412 413
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

414
        print_to_err(type(self).__name__, "begin to train on trainer")
415
        out_losses = []
416
        for i in range(RUN_STEP):
417 418 419 420 421
            (loss,) = exe.run(
                dist_prog,
                fetch_list=[avg_cost.name],
                feed=feeder.feed(get_data()),
            )
422
            out_losses.append(float(loss))
423 424
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
425

TaoTao Li's avatar
TaoTao Li 已提交
426
        dump_output(out_losses)
427

428 429 430
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
431 432 433 434 435 436 437 438 439 440 441 442
                model_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_persistables"
                )
                model_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_persistables"
                )
                infer_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_infer"
                )
                infer_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_infer"
                )
443
            else:
444 445 446 447 448 449 450 451 452 453 454 455
                model_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_persistables_2"
                )
                model_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_persistables_2"
                )
                infer_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_infer_2"
                )
                infer_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_infer_2"
                )
456
            paddle.distributed.io.save_persistables(
457 458
                exe, model_save_dir_fluid, fleet._origin_program
            )
459 460
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
461 462 463 464 465 466 467 468 469 470
            fluid.io.save_inference_model(
                infer_save_dir_fluid,
                feeded_var_names,
                [avg_cost],
                exe,
                fleet._origin_program,
            )
            fleet.save_inference_model(
                exe, infer_save_dir_fleet, feeded_var_names, [avg_cost]
            )
471

472
    def run_trainer(self, args):
473 474 475 476 477 478 479 480 481 482 483
        from io import StringIO

        old_stdout = sys.stdout
        sys.stdout = StringIO()

        build_stra = fluid.BuildStrategy()
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False

        if args.fuse_all_reduce is not None:
484
            sys.stderr.write(f'fuse_all_reduce={args.fuse_all_reduce}')
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

        if args.hogwild:
            build_stra.async_mode = True

        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

        if args.use_reduce:
            build_stra.reduce_strategy = (
                fluid.BuildStrategy.ReduceStrategy.Reduce
            )
        else:
            build_stra.reduce_strategy = (
                fluid.BuildStrategy.ReduceStrategy.AllReduce
            )
        pass_builder = None
        if args.batch_merge_repeat > 1:
            pass_builder = build_stra._finalize_strategy_and_create_passes()
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
            mypass.set("num_repeats", args.batch_merge_repeat)

        if (
            args.update_method == "nccl2"
            or args.update_method == "nccl2_reduce_layer"
        ):
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
        else:
            # case args.update_method == "nccl2_reduce_layer":
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0

W
Wu Yi 已提交
518
        self.lr = args.lr
W
Wu Yi 已提交
519
        if args.nccl2_reduce_layer_local_run:
520 521 522 523 524 525 526 527
            (
                test_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
            ) = self.get_model(batch_size=args.batch_size, single_device=True)
528
        elif args.use_dgc:
529 530 531 532 533 534 535
            (
                test_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
536 537 538 539 540
            ) = self.get_model(
                batch_size=args.batch_size,
                use_dgc=args.use_dgc,
                build_strategy=build_stra,
            )
W
Wu Yi 已提交
541
        else:
542 543 544 545 546 547 548 549
            (
                test_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
            ) = self.get_model(batch_size=args.batch_size)
550

W
Wu Yi 已提交
551
        if args.update_method == "pserver":
552
            print_to_err(
553
                type(self).__name__,
554 555 556 557 558 559 560 561 562 563 564
                "begin to run transpile on trainer with pserver mode",
            )
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild,
            )
T
tangwei12 已提交
565

T
typhoonzero 已提交
566
            trainer_prog = t.get_trainer_program()
567
            print_to_err(
568
                type(self).__name__,
569 570 571 572 573 574
                "get trainer program done with pserver mode.",
            )
        elif (
            args.update_method == "nccl2"
            or args.update_method == "nccl2_reduce_layer"
        ):
W
Wu Yi 已提交
575
            # transpile for nccl2
576
            config = paddle.distributed.transpiler.DistributeTranspilerConfig()
W
Wu Yi 已提交
577
            config.mode = "nccl2"
578
            config.nccl_comm_num = args.nccl_comm_num
579 580
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
581 582 583
                config.hierarchical_allreduce_inter_nranks = (
                    args.hallreduce_inter_nranks
                )
584
            print_to_err(
585
                type(self).__name__,
586 587
                "begin to run transpile on trainer with nccl2 mode",
            )
588 589 590
            nccl2_t = paddle.distributed.transpiler.DistributeTranspiler(
                config=config
            )
591 592 593 594 595 596 597
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint,
            )
598
            print_to_err(
599 600
                type(self).__name__, "get trainer program done. with nccl2 mode"
            )
W
Wu Yi 已提交
601
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
602
        else:
603
            print_to_err(
604
                type(self).__name__,
605 606
                "do nothing about main program, just use it",
            )
T
typhoonzero 已提交
607
            trainer_prog = fluid.default_main_program()
608
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
609

610 611 612
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

613
        if args.use_cuda:
614 615
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
616 617 618
        else:
            place = fluid.CPUPlace()

619 620
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
621
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
622

W
Wu Yi 已提交
623 624
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
625

626
        print_to_err(type(self).__name__, "begin to compile with data parallel")
627 628
        binary = compiler.CompiledProgram(
            trainer_prog, build_strategy=build_stra
629
        )
630
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
631 632

        feed_var_list = [
633 634
            var
            for var in trainer_prog.global_block().vars.values()
T
typhoonzero 已提交
635 636 637 638
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
639
        reader_generator = train_reader()
T
typhoonzero 已提交
640

641 642
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
643
            if args.update_method != "local" and args.use_reader_alloc:
644 645 646 647 648 649 650
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
651

652
        lr_scheduler = self.get_lr_scheduler(trainer_prog)
653
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
654
        out_losses = []
655
        for i in range(RUN_STEP):
656 657 658
            (loss,) = exe.run(
                binary, fetch_list=[avg_cost.name], feed=feeder.feed(get_data())
            )
659
            out_losses.append(float(loss))
660
            print_to_err(type(self).__name__, "run step %d finished" % i)
661 662 663
            if lr_scheduler is not None:
                lr_scheduler.step()

664 665
        print_to_err(type(self).__name__, "trainer run finished\n")
        # print_to_err(type(self).__name__, "out_losses")
666

667
        sys.stdout = old_stdout
TaoTao Li's avatar
TaoTao Li 已提交
668
        dump_output(out_losses)
T
typhoonzero 已提交
669 670


671
class TestParallelDyGraphRunnerBase:
672 673
    def get_model(self):
        raise NotImplementedError(
674 675
            "get_model should be implemented by child classes."
        )
676 677 678

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
679 680
            "train_one_loop should be implemented by the child classes."
        )
681

682
    def _get_data(self, batch, args):
683 684 685 686
        if (
            paddle.distributed.get_world_size() == 1
            and args.update_method == 'gloo'
        ):  # Gloo single mode
X
xiongkun 已提交
687 688
            return batch
        elif args.update_method != "local":
689
            new_batch = []
690

691 692 693
            # NOTE(@xiongkun03) args.diff_batch means batch length is different:
            # such as : batch = [2,3,4,5], then the first rank will get [2]  and
            # the second rank will get [3,4,5].
694 695
            # this function is for test sparse_embedding_differ_length
            if hasattr(args, "diff_batch") and args.diff_batch:
696 697 698
                assert (
                    len(batch) > 2
                ), "in differ_batch mode, len(batch) must > 2."
699 700 701
                if paddle.distributed.get_rank() == 0:
                    new_batch.append(batch[0])
                elif paddle.distributed.get_rank() == 1:
702
                    new_batch.extend(list(batch[1:]))
703 704 705 706 707 708 709 710 711 712
                else:
                    raise NotImplementedError(
                        "Current TestParallelDyGraphRunnerBase don't support world_size > 2"
                    )
                return new_batch
            else:
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
713 714 715
        else:
            return batch

716 717
    def run_trainer(self, args):
        seed = 90
X
xiongkun 已提交
718 719 720
        if args.update_method == 'gloo':
            place = fluid.CPUPlace()
        elif fluid.core.is_compiled_with_cuda():
721 722 723 724 725 726
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
727
            assert "Only support CUDAPlace or XPUPlace or CPU(Gloo) for now."
728 729 730 731

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
732 733
            np.random.seed(seed)
            import random
734

735
            random.seed(seed)
736 737
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
738

739
            # if args.update_method == "nccl2":
张春乔 已提交
740
            if args.update_method == "nccl2" or args.update_method == "bkcl":
Q
qizhaoaoe 已提交
741
                strategy = paddle.distributed.parallel.ParallelStrategy()
742 743 744 745
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
746
                paddle.distributed.init_parallel_env()
747
                print_to_err(
748
                    type(self).__name__,
749 750
                    "begin to prepare context in dygraph with nccl2",
                )
751
                if not args.find_unused_parameters:
Q
qizhaoaoe 已提交
752
                    model = paddle.DataParallel(
753 754
                        model, strategy, find_unused_parameters=False
                    )
755
                else:
Q
qizhaoaoe 已提交
756
                    model = paddle.DataParallel(
757 758
                        model, strategy, find_unused_parameters=True
                    )
759
                print_to_err(type(self).__name__, "model built in dygraph")
X
xiongkun 已提交
760 761 762 763

            elif args.update_method == "gloo":
                paddle.distributed.init_parallel_env()
                if not args.find_unused_parameters:
Q
qizhaoaoe 已提交
764
                    model = paddle.DataParallel(
765 766
                        model, find_unused_parameters=False
                    )
X
xiongkun 已提交
767
                else:
Q
qizhaoaoe 已提交
768
                    model = paddle.DataParallel(
769 770
                        model, find_unused_parameters=True
                    )
X
xiongkun 已提交
771

772
            out_losses = []
773
            print_to_err(type(self).__name__, "begin to run dygraph training")
774
            for step_id, data in enumerate(train_reader()):
775
                data = self._get_data(data, args)
776 777 778
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
779
                if step_id % 10 == 0:
780
                    print_to_err(
781
                        type(self).__name__,
782 783
                        "loss at step %d: %f" % (step_id, loss.numpy()),
                    )
Y
Yan Xu 已提交
784
                out_losses.append(loss.numpy())
785 786 787 788

                loss.backward()

                opt.minimize(loss)
789 790
                if not args.accumulate_gradient:
                    model.clear_gradients()
TaoTao Li's avatar
TaoTao Li 已提交
791
        dump_output(out_losses)
792

793 794 795 796 797 798 799 800 801
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
802
        random.seed(seed)
803
        # get trainer id
L
LiYuRio 已提交
804 805
        paddle.distributed.parallel._get_global_parallel_env()
        args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
806 807

        # 3. init parallel env
X
xiongkun 已提交
808
        if args.update_method in ["nccl2", "gloo"]:
809 810 811 812
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
X
xiongkun 已提交
813
        if args.update_method in ["nccl2", "gloo"]:
814
            model = paddle.DataParallel(
815 816
                model, find_unused_parameters=args.find_unused_parameters
            )
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

832
    def run_use_fleet_api_trainer(self, args):
833
        from paddle.distributed import fleet
834

835 836 837 838 839 840 841 842
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
843
        random.seed(seed)
844
        # get trainer id
L
LiYuRio 已提交
845 846
        paddle.distributed.parallel._get_global_parallel_env()
        args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
847

848 849
        # set strategy
        strategy = fleet.DistributedStrategy()
850 851
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
852

853
        # 3. init parallel env
张春乔 已提交
854
        if args.update_method == "nccl2" or "bkcl":
855
            fleet.init(is_collective=True, strategy=strategy)
856 857 858

        # 4. train model
        model, train_reader, opt = self.get_model()
张春乔 已提交
859
        if args.update_method == "nccl2" or "bkcl":
860 861 862 863 864 865 866 867 868 869 870 871 872 873
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
874 875
            if not args.accumulate_gradient:
                opt.clear_grad()
TaoTao Li's avatar
TaoTao Li 已提交
876
        dump_output(out_losses)
877

878

T
typhoonzero 已提交
879
def runtime_main(test_class):
W
Wu Yi 已提交
880
    parser = argparse.ArgumentParser(description='Run dist test.')
881 882 883
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer']
    )
W
Wu Yi 已提交
884
    parser.add_argument('--endpoints', type=str, required=False, default="")
885 886 887 888 889 890 891 892 893 894 895 896 897
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
        choices=[
            "pserver",
            "nccl2",
            "bkcl",
            "local",
            "nccl2_reduce_layer",
            "gloo",
        ],
    )
W
Wu Yi 已提交
898 899
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
900
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
901 902
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
903
    parser.add_argument('--use_pipeline', action='store_true')
904
    parser.add_argument('--use_fleet_api', action='store_true')
905
    parser.add_argument('--use_fleet_api_20', action='store_true')
906
    parser.add_argument('--use_local_sgd', action='store_true')
907
    parser.add_argument('--diff_batch', action='store_true')
908
    parser.add_argument('--ut4grad_allreduce', action='store_true')
909 910 911 912 913 914
    parser.add_argument(
        '--hallreduce_inter_nranks', type=int, required=False, default=2
    )
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default=""
    )
W
Wu Yi 已提交
915
    parser.add_argument('--sync_mode', action='store_true')
916
    parser.add_argument('--use_cuda', action='store_true')
X
xiongkun 已提交
917
    parser.add_argument('--use_cpu', action='store_true')
918
    parser.add_argument('--use_xpu', action='store_true')
919
    parser.add_argument('--use_dgc', action='store_true')
920
    parser.add_argument('--accumulate_gradient', action='store_true')
921
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
922
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
923
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
924
    parser.add_argument('--hogwild', action='store_true')
925
    parser.add_argument('--save_model', action='store_true')
926 927 928
    parser.add_argument(
        '--use_reader_alloc', action='store_true', required=False
    )
929
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
930
    parser.add_argument('--lr', required=False, type=float, default=0.001)
931 932 933 934 935 936 937 938 939
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1
    )
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False,
    )
940
    parser.add_argument('--sync_batch_norm', action='store_true')
941 942 943
    parser.add_argument(
        '--fuse_all_reduce', required=False, type=ast.literal_eval, default=None
    )
W
Wu Yi 已提交
944 945

    args = parser.parse_args()
T
typhoonzero 已提交
946

X
xiongkun 已提交
947 948 949
    if args.update_method == 'gloo':
        paddle.set_device("cpu")

T
typhoonzero 已提交
950
    model = test_class()
W
Wu Yi 已提交
951
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
952
        model.run_pserver(args)
953 954
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
955 956
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
957 958
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
959
    else:
960
        model.run_trainer(args)
X
Xin Pan 已提交
961

M
minqiyang 已提交
962

X
Xin Pan 已提交
963
class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
964 965 966
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

967 968 969
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
970
            self.__use_xpu = False
971
            self._use_dgc = False
972 973
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
974 975 976 977 978
            self.__use_xpu = False
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
979 980 981 982 983
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
984 985 986 987
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
988

X
Xin Pan 已提交
989 990 991
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
992
        self._port_set = set()
M
minqiyang 已提交
993
        self._python_interp = sys.executable
W
Wu Yi 已提交
994
        self._sync_mode = True
T
tangwei12 已提交
995
        self._hogwild_mode = False
996
        self._enforce_place = None
W
Wu Yi 已提交
997
        self._use_reduce = False
W
Wu Yi 已提交
998
        self._dc_asgd = False  # must use with async mode
999
        self._use_reader_alloc = True
W
Wu Yi 已提交
1000
        self._nccl2_mode = False
1001
        self._bkcl_mode = False
X
xiongkun 已提交
1002
        self._gloo_mode = False  # now, support gloo backend
1003
        self._pipeline_mode = False
1004
        self._mp_mode = False
1005
        self._diff_batch = False
W
Wu Yi 已提交
1006 1007 1008 1009 1010
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
1011
        self._lr = 0.001
1012
        self._use_dgc = False
1013
        self._dygraph = False
1014
        self._nccl_comm_num = 1
1015
        self._enable_backward_deps = False
1016
        self._use_fleet_api = False
1017
        self._use_fleet_api_20 = False
1018 1019
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
1020
        self._use_hallreduce = False
1021
        self._save_model = False
1022
        self._fuse_all_reduce = None
1023
        self._accumulate_gradient = False
1024
        self._find_unused_parameters = False
W
Wu Yi 已提交
1025
        self._setup_config()
1026 1027 1028 1029 1030 1031

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
1032
            self._ps_endpoints = "127.0.0.1:{},127.0.0.1:{}".format(
1033 1034 1035
                self._find_free_port(),
                self._find_free_port(),
            )
1036
        else:
1037
            self._ps_endpoints = "127.0.0.1:{},127.0.0.1:{}".format(
1038 1039 1040
                DIST_UT_PORT,
                DIST_UT_PORT + 1,
            )
1041
            DIST_UT_PORT += 2
1042
            self._dist_port = DIST_UT_PORT
1043

1044
        self._after_setup_config()
X
Xin Pan 已提交
1045

1046 1047 1048 1049 1050
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

Y
Yancey1989 已提交
1051
    def _find_free_port(self):
Y
Yancey1989 已提交
1052
        def __free_port():
1053 1054 1055
            with closing(
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as s:
Y
Yancey1989 已提交
1056
                s.bind(('', 0))
1057
                print_to_err(
1058 1059
                    type(self).__name__, "socket name: %s" % s.getsockname()[1]
                )
Y
Yancey1989 已提交
1060 1061 1062 1063 1064 1065 1066
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
1067

1068 1069 1070
    def start_pserver(
        self, model_file, check_error_log, required_envs, log_name=""
    ):
X
Xin Pan 已提交
1071
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1072 1073 1074 1075 1076 1077 1078 1079
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        ps0_cmd = ps_cmd % (
            self._python_interp,
            model_file,
            self._ps_endpoints,
            ps0_ep,
            self._trainers,
        )
        ps1_cmd = ps_cmd % (
            self._python_interp,
            model_file,
            self._ps_endpoints,
            ps1_ep,
            self._trainers,
        )
W
Wu Yi 已提交
1094 1095 1096 1097

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
1098

1099 1100
        print(ps0_cmd)
        print(ps1_cmd)
1101 1102 1103 1104
        path0 = os.path.join(self.temp_dir.name, log_name + "_ps0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_ps1_err.log")
        ps0_pipe = open(path0, "wb")
        ps1_pipe = open(path1, "wb")
G
gongweibao 已提交
1105

1106
        print_to_err(type(self).__name__, "going to start pserver process 0")
1107 1108 1109 1110
        ps0_proc = subprocess.Popen(
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
S
sneaxiy 已提交
1111
            env=modify_envs(required_envs),
1112
        )
1113
        print_to_err(type(self).__name__, "going to start pserver process 1")
1114 1115 1116 1117
        ps1_proc = subprocess.Popen(
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
S
sneaxiy 已提交
1118
            env=modify_envs(required_envs),
1119
        )
G
gongweibao 已提交
1120

1121
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
1122

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    def _run_local(
        self,
        model,
        envs,
        check_error_log=False,
        batch_size=DEFAULT_BATCH_SIZE,
        batch_merge_repeat=1,
        log_name="",
        devices="1",
    ):
1133 1134 1135 1136 1137 1138
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

1139
        cmd += " {} --role trainer --update_method local --lr {:f}".format(
1140 1141 1142
            model,
            self._lr,
        )
1143

1144 1145 1146 1147
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
1148 1149
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
1150

1151
        if self.__use_cuda:
1152
            cmd += " --use_cuda"
W
Wu Yi 已提交
1153
            env_local = {
1154 1155
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
1156
                "PADDLE_TRAINER_ID": "0",
1157 1158 1159 1160 1161
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
1162
                "PADDLE_TRAINERS_NUM": "1",
1163
                "PADDLE_TRAINER_ID": "0",
W
Wu Yi 已提交
1164
            }
1165 1166 1167
        else:
            env_local = {'CPU_NUM': '1'}

1168
        # not use dgc in single card
1169
        if len(devices) > 1 and self._use_dgc:
1170 1171
            cmd += " --use_dgc"

1172 1173 1174
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

1175 1176 1177
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
1178
        env_local.update(envs)
1179
        print(f"local_cmd: {cmd}, env: {env_local}")
G
gongweibao 已提交
1180

1181
        if check_error_log:
1182 1183
            path = os.path.join(self.temp_dir.name, log_name + "_local.log")
            err_log = open(path, "wb")
1184 1185 1186 1187
            local_proc = subprocess.Popen(
                cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=err_log,
S
sneaxiy 已提交
1188
                env=modify_envs(env_local),
1189
            )
G
gongweibao 已提交
1190
        else:
1191 1192 1193 1194
            local_proc = subprocess.Popen(
                cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
S
sneaxiy 已提交
1195
                env=modify_envs(env_local),
1196
            )
G
gongweibao 已提交
1197

1198 1199 1200 1201 1202 1203
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
X
Xin Pan 已提交
1204

S
sneaxiy 已提交
1205
        return load_and_remove_dump_file()
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    def _run_local_gloo(
        self,
        model,
        envs,
        check_error_log=False,
        batch_size=DEFAULT_BATCH_SIZE,
        batch_merge_repeat=1,
        log_name="",
        devices="0",
    ):
X
xiongkun 已提交
1217 1218
        saved_endpoints = self._ps_endpoints
        self._ps_endpoints = self._ps_endpoints.split(',')[0]
1219 1220 1221
        result = self._run_cluster_gloo(
            model, envs, 'gloo', check_error_log, log_name
        )
X
xiongkun 已提交
1222 1223 1224
        self._ps_endpoints = saved_endpoints
        return result

1225
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
1226
        # Run dist train to compare with local results
1227 1228 1229
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name
        )
W
Wu Yi 已提交
1230

X
Xin Pan 已提交
1231
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1232

1233 1234 1235 1236 1237 1238 1239 1240
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
        tr0_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            0,
            ps0_ep,
            self._trainers,
            self._lr,
        )
        tr1_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            1,
            ps1_ep,
            self._trainers,
            self._lr,
        )
W
Wu Yi 已提交
1259 1260 1261 1262

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
1263 1264 1265
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
1266 1267 1268
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
1269 1270 1271
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
1272
        if self.__use_cuda:
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1283

1284 1285
        print(f"tr0_cmd: {tr0_cmd}, env: {env0}")
        print(f"tr1_cmd: {tr1_cmd}, env: {env1}")
1286 1287 1288 1289 1290

        path0 = os.path.join(self.temp_dir.name, log_name + "_tr0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_tr1_err.log")
        tr0_pipe = open(path0, "wb")
        tr1_pipe = open(path1, "wb")
G
gongweibao 已提交
1291

1292
        print_to_err(type(self).__name__, "going to start trainer process 0")
1293 1294 1295 1296
        tr0_proc = subprocess.Popen(
            tr0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr0_pipe,
S
sneaxiy 已提交
1297
            env=modify_envs(env0, 0),
1298
        )
1299
        print_to_err(type(self).__name__, "going to start trainer process 1")
1300 1301 1302 1303
        tr1_proc = subprocess.Popen(
            tr1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr1_pipe,
S
sneaxiy 已提交
1304
            env=modify_envs(env1, 1),
1305
        )
X
Xin Pan 已提交
1306

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1319 1320
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1321

G
gongweibao 已提交
1322
        # close trainer file
1323 1324 1325 1326
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1327

W
Wu Yi 已提交
1328 1329
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1330

S
sneaxiy 已提交
1331
        return load_and_remove_dump_file(0), load_and_remove_dump_file(1)
W
Wu Yi 已提交
1332

1333 1334 1335
    def _get_gloo_trainer_cmd(
        self, model, ep, update_method, trainer_id, trainer_num
    ):
X
xiongkun 已提交
1336 1337 1338 1339 1340 1341 1342 1343
        env = {}
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1344 1345 1346 1347 1348 1349 1350 1351 1352
        tr_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            trainer_id,
            ep,
            update_method,
            self._lr,
        )
X
xiongkun 已提交
1353 1354 1355 1356 1357

        if self._use_reduce:
            tr_cmd += " --use_reduce"
        if self._use_reader_alloc:
            tr_cmd += " --use_reader_alloc"
1358 1359
        # assert self._use_reduce == False, "gloo not support _use_reduce"
        # assert self._use_reader_alloc == False, "gloo not support _use_reduce"
X
xiongkun 已提交
1360 1361
        if self._save_model:
            tr_cmd += " --save_model"
1362 1363
        if self._diff_batch:
            tr_cmd += " --diff_batch"
X
xiongkun 已提交
1364 1365
        self.__use_cuda = False
        self.__use_xpu = False
1366 1367
        assert not self.__use_cuda, "gloo not support use cuda"
        assert not self.__use_xpu, "gloo not support use xpu"
X
xiongkun 已提交
1368
        tr_cmd += " --use_cpu"
1369 1370
        env.update(
            {
1371 1372
                "PADDLE_TRAINERS_NUM": f"{trainer_num}",
                "PADDLE_TRAINER_ID": f"{trainer_id}",
1373 1374 1375 1376 1377 1378
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "PADDLE_DISTRI_BACKEND": "gloo",
                "GLOG_v": "2",
            }
        )
X
xiongkun 已提交
1379

1380
        assert not self._use_dgc, "gloo not support use dgc"
1381

X
xiongkun 已提交
1382 1383 1384 1385 1386 1387
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1388
        assert not self._pipeline_mode, "gloo not support use pipeline"
X
xiongkun 已提交
1389 1390 1391 1392 1393

        if self._enable_backward_deps:  # build strategy, save it
            tr_cmd += " --enable_backward_deps"

        if self._fuse_all_reduce is not None:
1394
            tr_cmd += f" --fuse_all_reduce {self._fuse_all_reduce}"
X
xiongkun 已提交
1395

1396 1397
        assert not self._use_fleet_api, "gloo not support use fleet api"
        assert not self._use_fleet_api_20, "gloo not support use fleet api"
X
xiongkun 已提交
1398 1399
        return tr_cmd, env

1400 1401 1402
    def _get_nccl2_trainer_cmd(
        self, model, ep, update_method, trainer_id, trainer_num
    ):
1403
        env = {}
1404 1405 1406 1407 1408 1409 1410
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1411 1412 1413 1414 1415 1416 1417 1418 1419
        tr_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            trainer_id,
            ep,
            update_method,
            self._lr,
        )
W
Wu Yi 已提交
1420 1421

        if self._use_reduce:
1422
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1423
        if self._use_reader_alloc:
1424
            tr_cmd += " --use_reader_alloc"
1425 1426
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1427
        if self.__use_cuda:
1428
            tr_cmd += " --use_cuda"
1429 1430
            env.update(
                {
1431 1432 1433 1434
                    "FLAGS_selected_gpus": f"{0}",
                    "CUDA_VISIBLE_DEVICES": f"{trainer_id}",
                    "PADDLE_TRAINERS_NUM": f"{trainer_num}",
                    "PADDLE_TRAINER_ID": f"{trainer_id}",
1435 1436 1437 1438
                    "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                    "PADDLE_CURRENT_ENDPOINT": ep,
                }
            )
1439 1440 1441 1442
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
1443 1444
            env.update(
                {
1445
                    "FLAGS_selected_xpus": f"{trainer_id}",
1446
                    # "XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
1447 1448
                    "PADDLE_TRAINERS_NUM": f"{trainer_num}",
                    "PADDLE_TRAINER_ID": f"{trainer_id}",
1449 1450 1451 1452 1453
                    "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                    "PADDLE_CURRENT_ENDPOINT": ep,
                    "GLOG_v": "2",
                }
            )
W
Wu Yi 已提交
1454
        else:
1455
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1456

1457
        if self._use_dgc:
1458 1459
            tr_cmd += " --use_dgc"

1460 1461 1462
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1463 1464 1465
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1466 1467
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1468
        if self._mp_mode:
1469
            env = {"FLAGS_selected_gpus": f"{trainer_id}"}
1470 1471

        if self._nccl_comm_num > 1:
1472
            tr_cmd += f" --nccl_comm_num {self._nccl_comm_num}"
1473

1474 1475
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1476

1477
        if self._enable_backward_deps:
1478
            tr_cmd += " --enable_backward_deps"
1479

1480
        if self._fuse_all_reduce is not None:
1481
            tr_cmd += f" --fuse_all_reduce {self._fuse_all_reduce}"
1482

1483
        if self._use_fleet_api:
1484 1485 1486 1487 1488
            tr_cmd += (
                " --use_fleet_api_20"
                if self._use_fleet_api_20
                else " --use_fleet_api"
            )
1489 1490 1491 1492
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1493 1494
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1495

1496 1497 1498
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1499
        return tr_cmd, env
W
Wu Yi 已提交
1500

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
    def _run_cluster_gloo(
        self, model, envs, update_method, check_error_log, log_name
    ):
        assert update_method == "gloo", (
            "_run_cluster_gloo must have update_method: gloo, but get %s"
            % update_method
        )
        assert (
            not self._use_hallreduce
        ), "_run_cluster_gloo must have _use_hallreduce = false"
X
xiongkun 已提交
1511 1512 1513 1514 1515 1516 1517 1518

        worker_endpoints = self._ps_endpoints.split(",")

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
1519 1520 1521
            tr_cmd, tr_env = self._get_gloo_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num
            )
X
xiongkun 已提交
1522 1523 1524
            tr_env.update(envs)
            tr_env["GLOG_vmodule"] = 'gloo_context=4'
            tr_env["GLOG_v"] = '3'
1525 1526 1527 1528 1529
            print(
                "use_hallreduce:{} tr_cmd:{}, env: {}".format(
                    self._use_hallreduce, tr_cmd, tr_env
                )
            )
X
xiongkun 已提交
1530

1531
            path = os.path.join(
1532
                self.temp_dir.name, log_name + f"_tr{i}_err.log"
1533
            )
1534
            tr_pipe = open(path, "wb")
X
xiongkun 已提交
1535 1536 1537

            print_to_err(
                type(self).__name__,
1538
                f"going to start process {i} with nccl2",
1539 1540 1541 1542 1543
            )
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
S
sneaxiy 已提交
1544
                env=modify_envs(tr_env, i),
1545
            )
X
xiongkun 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
1555
            sys.stderr.write(f'trainer {i} stderr: {tr_err}\n')
X
xiongkun 已提交
1556 1557

        if trainer_num == 1:
1558 1559
            if check_error_log:
                print("outs[0]:", outs[0])
S
sneaxiy 已提交
1560
            return load_and_remove_dump_file(0)
X
xiongkun 已提交
1561 1562 1563 1564 1565

        else:
            if check_error_log:
                print("outs[0]:", outs[0])
                print("outs[1]:", outs[1])
S
sneaxiy 已提交
1566
            return load_and_remove_dump_file(0), load_and_remove_dump_file(1)
X
xiongkun 已提交
1567

1568 1569 1570
    def _run_cluster_nccl2(
        self, model, envs, update_method, check_error_log, log_name
    ):
1571 1572
        if self._use_hallreduce:
            self._ps_endpoints = ""
1573 1574 1575

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1576
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1577 1578
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
1579 1580
                        self._find_free_port()
                    )
1581 1582 1583 1584
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1585
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1586

1587 1588
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1589

1590
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1591

1592 1593 1594 1595
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
1596 1597
                model, worker_endpoints[i], update_method, i, trainer_num
            )
1598
            tr_env.update(envs)
1599 1600 1601 1602 1603
            print(
                "use_hallreduce:{} tr_cmd:{}, env: {}".format(
                    self._use_hallreduce, tr_cmd, tr_env
                )
            )
W
Wu Yi 已提交
1604

1605
            path = os.path.join(
1606
                self.temp_dir.name, log_name + f"_tr{i}_err.log"
1607
            )
1608
            tr_pipe = open(path, "wb")
W
Wu Yi 已提交
1609

1610
            print_to_err(
1611
                type(self).__name__,
1612
                f"going to start process {i} with nccl2",
1613 1614 1615 1616 1617
            )
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
S
sneaxiy 已提交
1618
                env=modify_envs(tr_env, i),
1619
            )
1620 1621 1622 1623 1624 1625 1626 1627 1628

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
1629
            sys.stderr.write(f'trainer {i} stderr: {tr_err}\n')
1630

1631 1632 1633
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1634

S
sneaxiy 已提交
1635
        return load_and_remove_dump_file(0), load_and_remove_dump_file(1)
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
1648 1649
                model, worker_endpoints[i], update_method, i, trainer_num
            )
1650 1651 1652 1653 1654
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
1655
            print(f"tr_cmd:{tr_cmd}, env: {tr_env}")
1656

1657
            path = os.path.join(self.temp_dir.name + f"tr{i}_err.log")
1658
            tr_pipe = open(path, "wb")
1659 1660 1661

            print_to_err(
                type(self).__name__,
1662
                f"going to start process {i} with nccl2",
1663 1664 1665 1666 1667
            )
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
S
sneaxiy 已提交
1668
                env=modify_envs(tr_env, i),
1669
            )
1670 1671 1672 1673 1674 1675 1676 1677 1678

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
1679
            sys.stderr.write(f'trainer {i} stderr: {tr_err}\n')
1680 1681 1682 1683

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
S
sneaxiy 已提交
1684
        return load_and_remove_dump_file(0), load_and_remove_dump_file(1)
1685

1686
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1687 1688 1689 1690 1691 1692
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1693
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1694
            "FLAGS_rpc_retry_bind_port": "50",
1695
            "FLAGS_cudnn_deterministic": "1",
1696
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1697
            "http_proxy": "",
1698
            "NCCL_P2P_DISABLE": "1",
1699
            "NCCL_SHM_DISABLE": "1",
1700
            "FLAGS_new_executor_static_build": "1",
1701 1702 1703
        }

        if check_error_log:
1704 1705 1706 1707
            required_envs["GLOG_vmodule"] = (
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10,"
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10,"
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10,"
1708
                "grpc_server=10,request_handler_impl=10,section_worker=10"
1709
            )
1710 1711
            required_envs["GLOG_logtostderr"] = "1"

1712 1713
        if os.getenv('NVIDIA_TF32_OVERRIDE', '') is not None:
            required_envs['NVIDIA_TF32_OVERRIDE'] = os.getenv(
1714 1715
                'NVIDIA_TF32_OVERRIDE', ''
            )
1716

1717 1718 1719
        required_envs.update(need_envs)
        return required_envs

1720 1721 1722 1723 1724 1725 1726 1727
    def check_with_place(
        self,
        model_file,
        delta=1e-3,
        check_error_log=False,
        need_envs={},
        log_name="",
    ):
1728
        if self._dygraph and (self._gloo_mode or self._nccl2_mode):
1729 1730 1731 1732 1733 1734 1735
            self.check_with_place_func(
                model_file=model_file,
                delta=delta,
                check_error_log=check_error_log,
                need_envs=need_envs,
                log_name=log_name,
            )
1736
        else:
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
            self.check_with_place_func(
                model_file=model_file,
                delta=delta,
                check_error_log=check_error_log,
                need_envs=need_envs,
                log_name=log_name,
            )

    def check_with_place_func(
        self,
        model_file,
        delta=1e-3,
        check_error_log=False,
        need_envs={},
        log_name="",
    ):
1753 1754
        required_envs = self._get_required_envs(check_error_log, need_envs)

X
xiongkun 已提交
1755
        if self._gloo_mode:
1756 1757 1758
            local_losses = self._run_local_gloo(
                model_file, required_envs, check_error_log, log_name=log_name
            )
X
xiongkun 已提交
1759
        else:
1760 1761 1762
            local_losses = self._run_local(
                model_file, required_envs, check_error_log, log_name=log_name
            )
1763

W
Wu Yi 已提交
1764
        if self._nccl2_mode:
W
Wu Yi 已提交
1765 1766
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1767 1768
                    model_file,
                    required_envs,
1769 1770
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1771 1772
                    log_name=log_name,
                )
W
Wu Yi 已提交
1773 1774
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1775 1776
                    model_file,
                    required_envs,
1777 1778
                    update_method='nccl2',
                    check_error_log=check_error_log,
1779 1780
                    log_name=log_name,
                )
1781 1782 1783 1784 1785 1786
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
1787 1788
                log_name=log_name,
            )
X
xiongkun 已提交
1789 1790 1791 1792 1793 1794 1795
        elif self._gloo_mode:
            # gloo mode, cpu only parallel train @xiongkun03
            tr0_losses, tr1_losses = self._run_cluster_gloo(
                model_file,
                required_envs,
                update_method='gloo',
                check_error_log=check_error_log,
1796 1797
                log_name=log_name,
            )
1798
        elif self._pipeline_mode:
1799 1800 1801
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name
            )
W
Wu Yi 已提交
1802
        else:
1803 1804 1805
            tr0_losses, tr1_losses = self._run_cluster(
                model_file, required_envs, check_error_log, log_name=log_name
            )
1806 1807

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1808 1809 1810
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1811 1812 1813 1814
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1815 1816
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1817

1818 1819 1820 1821 1822 1823 1824 1825
    def check_with_place_multi_cards(
        self,
        model_file,
        delta=1e-3,
        check_error_log=False,
        need_envs={},
        log_name="",
    ):
1826 1827 1828 1829 1830 1831
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
1832 1833 1834 1835 1836 1837 1838
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
                devices="0,1",
            )
1839 1840

            self._use_dgc = False
1841 1842 1843 1844 1845 1846 1847
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
                devices="0,1",
            )
1848 1849 1850 1851 1852 1853 1854 1855

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)