text.py 177.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import collections
import six
import sys
from functools import partial, reduce

import numpy as np

import paddle
import paddle.fluid as fluid
import paddle.fluid.layers.utils as utils
from paddle.fluid import layers
from paddle.fluid.layers import BeamSearchDecoder
from paddle.fluid.layers.utils import map_structure, flatten, pack_sequence_as
from paddle.fluid.dygraph import Layer, Embedding, Linear, LayerNorm, GRUUnit, Conv2D, Pool2D
from paddle.fluid.data_feeder import convert_dtype

__all__ = [
    'RNNCell',
    'BasicLSTMCell',
    'BasicGRUCell',
    'RNN',
    'BidirectionalRNN',
    'StackedRNNCell',
    'StackedLSTMCell',
    'LSTM',
    'BidirectionalLSTM',
    'StackedGRUCell',
    'GRU',
    'BidirectionalGRU',
    'DynamicDecode',
    'BeamSearchDecoder',
    'Conv1dPoolLayer',
    'CNNEncoder',
    'MultiHeadAttention',
    'FFN',
    'TransformerEncoderLayer',
    'TransformerEncoder',
    'TransformerDecoderLayer',
    'TransformerDecoder',
    'TransformerCell',
    'TransformerBeamSearchDecoder',
    'LinearChainCRF',
    'CRFDecoding',
    'SequenceTagging',
]


class RNNCell(Layer):
    """
    RNNCell is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

    def get_initial_states(self,
                           batch_ref,
                           shape=None,
                           dtype=None,
                           init_value=0,
                           batch_dim_idx=0):
        """
        Generate initialized states according to provided shape, data type and
        value.

        Parameters:
            batch_ref: A (possibly nested structure of) tensor variable[s].
                The first dimension of the tensor will be used as batch size to
                initialize states.
            shape: A (possibly nested structure of) shape[s], where a shape is
                represented as a list/tuple of integer). -1(for batch size) will
                beautomatically inserted if shape is not started with it. If None,
                property `state_shape` will be used. The default value is None.
            dtype: A (possibly nested structure of) data type[s]. The structure
                must be same as that of `shape`, except when all tensors' in states
                has the same data type, a single data type can be used. If None and
                property `cell.state_shape` is not available, float32 will be used
                as the data type. The default value is None.
            init_value: A float value used to initialize states.
            batch_dim_idx: An integer indicating which dimension of the tensor in
                inputs represents batch size.  The default value is 0.

        Returns:
            Variable: tensor variable[s] packed in the same structure provided \
                by shape, representing the initialized states.
        """
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
            if sys.version_info < (3, ):
                integer_types = (
                    int,
                    long, )
            else:
                integer_types = (int, )
            """For shape, list/tuple of integer is the finest-grained objection"""
            if (isinstance(seq, list) or isinstance(seq, tuple)):
                if reduce(lambda flag, x: isinstance(x, integer_types) and flag,
                          seq, True):
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
            return (isinstance(seq, collections.Sequence) and
                    not isinstance(seq, six.string_types))

        class Shape(object):
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:  # use fp32 as default
            states_dtypes = "float32"
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
            lambda shape, dtype: fluid.layers.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
                value=init_value,
                input_dim_idx=batch_dim_idx), states_shapes, states_dtypes)
        return init_states

    @property
    def state_shape(self):
        """
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) shape[s], where a shape is represented
        as a list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it).
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
            "Please add implementaion for `state_shape` in the used cell.")

    @property
    def state_dtype(self):
        """
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) data types[s]. The structure must be
        same as that of `shape`, except when all tensors' in states has the same
        data type, a signle data type can be used.
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
            "Please add implementaion for `state_dtype` in the used cell.")


class BasicLSTMCell(RNNCell):
    """
    Long-Short Term Memory(LSTM) RNN cell.

    The formula used is as follows:

    .. math::

        i_{t} & = act_g(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})

        f_{t} & = act_g(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias)

        c_{t} & = f_{t}c_{t-1} + i_{t} act_c (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})

        o_{t} & = act_g(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})

        h_{t} & = o_{t} act_c (c_{t})

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

    Parameters:
        input_size (int): The input size in the LSTM cell.
        hidden_size (int): The hidden size in the LSTM cell.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            weight matrix. Default: None.
        bias_attr (ParamAttr, optional): The parameter attribute for the bias
            of LSTM. Default: None.
        gate_activation (function, optional): The activation function for gates
            of LSTM, that is :math:`act_g` in the formula. Default: None,
            representing for `fluid.layers.sigmoid`.
        activation (function, optional): The non-gate activation function of
            LSTM, that is :math:`act_c` in the formula. Default: None,
            representing for 'fluid.layers.tanh'.
        forget_bias(float, optional): forget bias used when computing forget gate.
            Default 1.0
        dtype(string, optional): The data type used in this cell. Default float32.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import BasicLSTMCell, RNN

            inputs = paddle.rand((2, 4, 32))
            cell = BasicLSTMCell(input_size=32, hidden_size=64)
            rnn = RNN(cell=cell)
            outputs, _ = rnn(inputs)  # [2, 4, 64]
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 param_attr=None,
                 bias_attr=None,
                 gate_activation=None,
                 activation=None,
                 forget_bias=1.0,
                 dtype='float32'):
        super(BasicLSTMCell, self).__init__()

        self._hidden_size = hidden_size
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._gate_activation = gate_activation or layers.sigmoid
        self._activation = activation or layers.tanh
        # TODO(guosheng): find better way to resolve constants in __init__
        self._forget_bias = layers.create_global_var(
            shape=[1], dtype=dtype, value=forget_bias, persistable=True)
257 258
        # TODO(guosheng): refine this if recurrent_op removes gradient require
        self._forget_bias.stop_gradient = False
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
        self._dtype = dtype
        self._input_size = input_size

        self._weight = self.create_parameter(
            attr=self._param_attr,
            shape=[
                self._input_size + self._hidden_size, 4 * self._hidden_size
            ],
            dtype=self._dtype)

        self._bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[4 * self._hidden_size],
            dtype=self._dtype,
            is_bias=True)

    def forward(self, inputs, states):
        """
        Performs single step LSTM calculations.

        Parameters:
            inputs (Variable): A tensor with shape `[batch_size, input_size]`,
                corresponding to :math:`x_t` in the formula. The data type
                should be float32 or float64.
            states (Variable): A list of containing two tensors, each shaped
                `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}, c_{t-1}`
                in the formula. The data type should be float32 or float64.

        Returns:
            tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` is \
                a tensor with shape `[batch_size, hidden_size]`, corresponding \
                to :math:`h_{t}` in the formula; `new_states` is a list containing \
                two tenser variables shaped `[batch_size, hidden_size]`, corresponding \
                to :math:`h_{t}, c_{t}` in the formula. The data type of these \
                tensors all is same as that of `states`.
        """
        pre_hidden, pre_cell = states
        concat_input_hidden = layers.concat([inputs, pre_hidden], 1)
        gate_input = layers.matmul(x=concat_input_hidden, y=self._weight)
        gate_input = layers.elementwise_add(gate_input, self._bias)
        i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1)
        new_cell = layers.elementwise_add(
            layers.elementwise_mul(
                pre_cell,
                self._gate_activation(
                    layers.elementwise_add(f, self._forget_bias))),
            layers.elementwise_mul(
                self._gate_activation(i), self._activation(j)))
        new_hidden = self._activation(new_cell) * self._gate_activation(o)

        return new_hidden, [new_hidden, new_cell]

    @property
    def state_shape(self):
        """
        The `state_shape` of BasicLSTMCell is a list with two shapes: `[[hidden_size], [hidden_size]]`
        (-1 for batch size would be automatically inserted into shape). These two
        shapes correspond to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
        return [[self._hidden_size], [self._hidden_size]]


class BasicGRUCell(RNNCell):
    """
    Gated Recurrent Unit (GRU) RNN cell.

    The formula for GRU used is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

    Parameters:
        input_size (int): The input size for the first GRU cell.
        hidden_size (int): The hidden size for every GRU cell.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            weight matrix. Default: None.
        bias_attr (ParamAttr, optional): The parameter attribute for the bias
            of LSTM. Default: None.
        gate_activation (function, optional): The activation function for gates
            of GRU, that is :math:`act_g` in the formula. Default: None,
            representing for `fluid.layers.sigmoid`.
        activation (function, optional): The non-gate activation function of
            GRU, that is :math:`act_c` in the formula. Default: None,
            representing for 'fluid.layers.tanh'.
        dtype(string, optional): The data type used in this cell. Default float32.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import BasicGRUCell, RNN

            inputs = paddle.rand((2, 4, 32))
            cell = BasicGRUCell(input_size=32, hidden_size=64)
            rnn = RNN(cell=cell)
            outputs, _ = rnn(inputs)  # [2, 4, 64]
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 param_attr=None,
                 bias_attr=None,
                 gate_activation=None,
                 activation=None,
                 dtype='float32'):
        super(BasicGRUCell, self).__init__()
        self._input_size = input_size
        self._hidden_size = hidden_size
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._gate_activation = gate_activation or layers.sigmoid
        self._activation = activation or layers.tanh
        self._dtype = dtype

        if self._param_attr is not None and self._param_attr.name is not None:
            gate_param_attr = copy.deepcopy(self._param_attr)
            candidate_param_attr = copy.deepcopy(self._param_attr)
            gate_param_attr.name += "_gate"
            candidate_param_attr.name += "_candidate"
        else:
            gate_param_attr = self._param_attr
            candidate_param_attr = self._param_attr

        self._gate_weight = self.create_parameter(
            attr=gate_param_attr,
            shape=[
                self._input_size + self._hidden_size, 2 * self._hidden_size
            ],
            dtype=self._dtype)

        self._candidate_weight = self.create_parameter(
            attr=candidate_param_attr,
            shape=[self._input_size + self._hidden_size, self._hidden_size],
            dtype=self._dtype)

        if self._bias_attr is not None and self._bias_attr.name is not None:
            gate_bias_attr = copy.deepcopy(self._bias_attr)
            candidate_bias_attr = copy.deepcopy(self._bias_attr)
            gate_bias_attr.name += "_gate"
            candidate_bias_attr.name += "_candidate"
        else:
            gate_bias_attr = self._bias_attr
            candidate_bias_attr = self._bias_attr

        self._gate_bias = self.create_parameter(
            attr=gate_bias_attr,
            shape=[2 * self._hidden_size],
            dtype=self._dtype,
            is_bias=True)
        self._candidate_bias = self.create_parameter(
            attr=candidate_bias_attr,
            shape=[self._hidden_size],
            dtype=self._dtype,
            is_bias=True)

    def forward(self, inputs, states):
        """
        Performs single step GRU calculations.

        Parameters:
            inputs (Variable): A tensor with shape `[batch_size, input_size]`,
                corresponding to :math:`x_t` in the formula. The data type
                should be float32 or float64.
            states (Variable): A tensor with shape `[batch_size, hidden_size]`.
                corresponding to :math:`h_{t-1}` in the formula. The data type
                should be float32 or float64.

        Returns:
            tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` and \
                `new_states` is the same tensor shaped `[batch_size, hidden_size]`, \
                corresponding to :math:`h_t` in the formula. The data type of the \
                tensor is same as that of `states`.        
        """
        pre_hidden = states
        concat_input_hidden = layers.concat([inputs, pre_hidden], axis=1)

        gate_input = layers.matmul(x=concat_input_hidden, y=self._gate_weight)

        gate_input = layers.elementwise_add(gate_input, self._gate_bias)

        gate_input = self._gate_activation(gate_input)
        r, u = layers.split(gate_input, num_or_sections=2, dim=1)

        r_hidden = r * pre_hidden

        candidate = layers.matmul(
            layers.concat([inputs, r_hidden], 1), self._candidate_weight)
        candidate = layers.elementwise_add(candidate, self._candidate_bias)

        c = self._activation(candidate)
        new_hidden = u * pre_hidden + (1 - u) * c

        return new_hidden, new_hidden

    @property
    def state_shape(self):
        """
        The `state_shape` of BasicGRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to :math:`h_{t-1}`.
        """
        return [self._hidden_size]


class RNN(Layer):
    """
    RNN creates a recurrent neural network specified by RNNCell `cell`, which
    performs :code:`cell.forward()` repeatedly until reaches to the maximum
    length of `inputs`.

    Parameters:
        cell(RNNCell): An instance of `RNNCell`.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Default: `False`.
        time_major (bool, optional): Indicate the data layout of Tensor included
            in `input` and `output` tensors. If `False`, the data layout would
            be batch major with shape `[batch_size, sequence_length, ...]`.  If
            `True`, the data layout would be time major with shape
            `[sequence_length, batch_size, ...]`. Default: `False`.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import StackedLSTMCell, RNN

            inputs = paddle.rand((2, 4, 32))
            cell = StackedLSTMCell(input_size=32, hidden_size=64)
            rnn = RNN(cell=cell)
            outputs, _ = rnn(inputs)  # [2, 4, 64]
    """

    def __init__(self, cell, is_reverse=False, time_major=False):
        super(RNN, self).__init__()
        self.cell = cell
        if not hasattr(self.cell, "call"):
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major
        self.batch_index, self.time_step_index = (1, 0) if time_major else (0,
                                                                            1)

    def forward(self,
                inputs,
                initial_states=None,
                sequence_length=None,
                **kwargs):
        """
        Performs :code:`cell.forward()` repeatedly until reaches to the maximum
        length of `inputs`.

        Parameters:
            inputs (Variable): A (possibly nested structure of) tensor variable[s]. 
                The shape of tensor should be `[batch_size, sequence_length, ...]`
                for `time_major == False` or `[sequence_length, batch_size, ...]`
                for `time_major == True`. It represents the inputs to be unrolled
                in RNN.
            initial_states (Variable, optional): A (possibly nested structure of)
                tensor variable[s], representing the initial state for RNN. 
                If not provided, `cell.get_initial_states` would be used to produce
                the initial state. Default None.
            sequence_length (Variable, optional): A tensor with shape `[batch_size]`.
                It stores real length of each instance, thus enables users to extract
                the last valid state when past a batch element's sequence length for
                correctness. If not provided, the paddings would be treated same as
                non-padding inputs. Default None.
            **kwargs: Additional keyword arguments. Arguments passed to `cell.forward`. 

        Returns:
            tuple: A tuple( :code:`(final_outputs, final_states)` ) including the final \
                outputs and states, both are Tensor or nested structure of Tensor. \
                `final_outputs` has the same structure and data types as \
                the returned `outputs` of :code:`cell.forward` , and each Tenser in `final_outputs` \
                stacks all time steps' counterpart in `outputs` thus has shape `[batch_size, sequence_length, ...]` \
                for `time_major == False` or `[sequence_length, batch_size, ...]` for `time_major == True`. \
                `final_states` is the counterpart at last time step of initial states, \
                thus has the same structure with it and has tensors with same shapes \
                and data types.
        """
        if fluid.in_dygraph_mode():

            class ArrayWrapper(object):
                def __init__(self, x):
                    self.array = [x]

                def append(self, x):
                    self.array.append(x)
                    return self

            def _maybe_copy(state, new_state, step_mask):
                # TODO: use where_op
                new_state = fluid.layers.elementwise_mul(
                    new_state, step_mask,
                    axis=0) - fluid.layers.elementwise_mul(
                        state, (step_mask - 1), axis=0)
                return new_state

            flat_inputs = flatten(inputs)
            batch_size, time_steps = (
                flat_inputs[0].shape[self.batch_index],
                flat_inputs[0].shape[self.time_step_index])

            if initial_states is None:
                initial_states = self.cell.get_initial_states(
                    batch_ref=inputs, batch_dim_idx=self.batch_index)

            if not self.time_major:
                inputs = map_structure(
                    lambda x: fluid.layers.transpose(x, [1, 0] + list(
                        range(2, len(x.shape)))), inputs)

            if sequence_length is not None:
                mask = fluid.layers.sequence_mask(
                    sequence_length,
                    maxlen=time_steps,
                    dtype=flatten(initial_states)[0].dtype)
                mask = fluid.layers.transpose(mask, [1, 0])

            if self.is_reverse:
                inputs = map_structure(
                    lambda x: fluid.layers.reverse(x, axis=[0]), inputs)
                mask = fluid.layers.reverse(
                    mask, axis=[0]) if sequence_length is not None else None

            states = initial_states
            outputs = []
            for i in range(time_steps):
                step_inputs = map_structure(lambda x: x[i], inputs)
                step_outputs, new_states = self.cell(step_inputs, states,
                                                     **kwargs)
                if sequence_length is not None:
                    new_states = map_structure(
                        partial(
                            _maybe_copy, step_mask=mask[i]),
                        states,
                        new_states)
                states = new_states
                outputs = map_structure(
                    lambda x: ArrayWrapper(x),
                    step_outputs) if i == 0 else map_structure(
                        lambda x, x_array: x_array.append(x), step_outputs,
                        outputs)

            final_outputs = map_structure(
                lambda x: fluid.layers.stack(x.array, axis=self.time_step_index
                                             ), outputs)

            if self.is_reverse:
                final_outputs = map_structure(
                    lambda x: fluid.layers.reverse(x, axis=self.time_step_index
                                                   ), final_outputs)

            final_states = new_states
        else:
            final_outputs, final_states = fluid.layers.rnn(
                self.cell,
                inputs,
                initial_states=initial_states,
                sequence_length=sequence_length,
                time_major=self.time_major,
                is_reverse=self.is_reverse,
                **kwargs)
        return final_outputs, final_states


class StackedRNNCell(RNNCell):
    """
    Wrapper allowing a stack of RNN cells to behave as a single cell. It is used
    to implement stacked RNNs.

    Parameters:
        cells (list|tuple): List of RNN cell instances.

    Examples:

        .. code-block:: python

            from paddle.incubate.hapi.text import BasicLSTMCell, StackedRNNCell

            cells = [BasicLSTMCell(32, 32), BasicLSTMCell(32, 32)]
            stack_rnn = StackedRNNCell(cells)
    """

    def __init__(self, cells):
        super(StackedRNNCell, self).__init__()
        self.cells = []
        for i, cell in enumerate(cells):
            self.cells.append(self.add_sublayer("cell_%d" % i, cell))

    def forward(self, inputs, states, **kwargs):
        """
        Performs :code:`cell.forward` for all including cells sequentially.
        Each cell's `inputs` is the `outputs` of the previous cell. And each
        cell's `states` is the corresponding one in `states`.

        Parameters:
            inputs (Variable): The inputs for the first cell. Mostly it is a
                float32 or float64 tensor with shape `[batch_size, input_size]`.
            states (list): A list containing states for all cells orderly.
            **kwargs: Additional keyword arguments, which passed to `cell.forward`
                for all including cells.

        Returns:
            tuple: A tuple( :code:`(outputs, new_states)` ). `outputs` is the \
                `outputs` of the last cell. `new_states` is a list composed \
                of all cells' `new_states`, and its structure and data type is \
                same as that of `states` argument.
        """
        new_states = []
        for cell, state in zip(self.cells, states):
            outputs, new_state = cell(inputs, state, **kwargs)
            inputs = outputs
            new_states.append(new_state)
        return outputs, new_states

    @staticmethod
    def stack_param_attr(param_attr, n):
        """
        If `param_attr` is a list or tuple, convert every element in it to a
        ParamAttr instance. Otherwise, repeat `param_attr` `n` times to
        construct a list, and rename every one by appending a increasing index
        suffix to avoid having same names when `param_attr` contains a name.

        Parameters:
            param_attr (list|tuple|ParamAttr): A list, tuple or something can be
                converted to a ParamAttr instance by `ParamAttr._to_attr`.
            n (int): The times to repeat to construct a list when `param_attr`
                is not a list or tuple.

        Returns:
            list: A list composed of each including cell's `param_attr`.
        """
        if isinstance(param_attr, (list, tuple)):
            assert len(param_attr) == n, (
                "length of param_attr should be %d when it is a list/tuple" % n)
            param_attrs = [
                fluid.ParamAttr._to_attr(attr) for attr in param_attr
            ]
        else:
            param_attrs = []
            attr = fluid.ParamAttr._to_attr(param_attr)
            for i in range(n):
                attr_i = copy.deepcopy(attr)
                if attr.name:
                    attr_i.name = attr_i.name + "_" + str(i)
                param_attrs.append(attr_i)
        return param_attrs

    @property
    def state_shape(self):
        """
        The `state_shape` of StackedRNNCell is a list composed of each including
        cell's `state_shape`.

        Returns:
            list: A list composed of each including cell's `state_shape`.
        """
        return [cell.state_shape for cell in self.cells]


class StackedLSTMCell(RNNCell):
    """
    Wrapper allowing a stack of LSTM cells to behave as a single cell. It is used
    to implement stacked LSTM.

    The formula for LSTM used here is as follows:

    .. math::

        i_{t} & = act_g(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})

        f_{t} & = act_g(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias)

        c_{t} & = f_{t}c_{t-1} + i_{t} act_c (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})

        o_{t} & = act_g(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})

        h_{t} & = o_{t} act_c (c_{t})


    Parameters:
        input_size (int): The input size for the first LSTM cell.
        hidden_size (int): The hidden size for every LSTM cell.
        gate_activation (function, optional): The activation function for gates
            of LSTM, that is :math:`act_g` in the formula. Default: None,
            representing for `fluid.layers.sigmoid`.
        activation (function, optional): The non-gate activation function of
            LSTM, that is :math:`act_c` in the formula. Default: None,
            representing for 'fluid.layers.tanh'.
        forget_bias (float, optional): forget bias used when computing forget
            gate. It also can accept a boolean value `True`, which would set
            :math:`forget\\_bias` as 0 but initialize :math:`b_{f}` as 1 and
            :math:`b_{i}, b_{f}, b_{c}, b_{0}` as 0. This is recommended in
            http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf .
            Default 1.0.
        num_layers(int, optional): The number of LSTM to be stacked. Default 1.
        dropout(float|list|tuple, optional): The dropout probability after each
            LSTM. It also can be a list or tuple, including dropout probabilities
            for the corresponding LSTM. Default 0.0
        param_attr (list|tuple|ParamAttr): A list, tuple or something can be
            converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is
            a list or tuple, it's length must equal to `num_layers`. Otherwise,
            construct a list by `StackedRNNCell.stack_param_attr(param_attr, num_layers)`.
            Default None.
        bias_attr (list|tuple|ParamAttr): A list, tuple or something can be
            converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is
            a list or tuple, it's length must equal to `num_layers`. Otherwise,
            construct a list by `StackedRNNCell.stack_param_attr(bias_attr, num_layers)`.
            Default None.
        dtype(string, optional): The data type used in this cell. It can be
            float32 or float64. Default float32.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import StackedLSTMCell, RNN

            inputs = paddle.rand((2, 4, 32))
            cell = StackedLSTMCell(input_size=32, hidden_size=64)
            rnn = RNN(cell=cell)
            outputs, _ = rnn(inputs)  # [2, 4, 64]
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 gate_activation=None,
                 activation=None,
                 forget_bias=1.0,
                 num_layers=1,
                 dropout=0.0,
                 param_attr=None,
                 bias_attr=None,
                 dtype="float32"):
        super(StackedLSTMCell, self).__init__()
        self.dropout = utils.convert_to_list(dropout, num_layers, "dropout",
                                             float)
        param_attrs = StackedRNNCell.stack_param_attr(param_attr, num_layers)
        bias_attrs = StackedRNNCell.stack_param_attr(bias_attr, num_layers)

        self.cells = []
        for i in range(num_layers):
            if forget_bias is True:
                bias_attrs[
                    i].initializer = fluid.initializer.NumpyArrayInitializer(
                        np.concatenate(
                            np.zeros(2 * hidden_size),
                            np.ones(hidden_size), np.zeros(hidden_size)).astype(
                                dtype))
                forget_bias = 0.0
            self.cells.append(
                self.add_sublayer(
                    "lstm_%d" % i,
                    BasicLSTMCell(
                        input_size=input_size if i == 0 else hidden_size,
                        hidden_size=hidden_size,
                        gate_activation=gate_activation,
                        activation=activation,
                        forget_bias=forget_bias,
                        param_attr=param_attrs[i],
                        bias_attr=bias_attrs[i],
                        dtype=dtype)))

    def forward(self, inputs, states):
        """
        Performs the stacked LSTM cells sequentially. Each cell's `inputs` is
        the `outputs` of the previous cell. And each cell's `states` is the
        corresponding one in `states`.

        Parameters:
            inputs (Variable): The inputs for the first cell. It is a float32 or
                float64 tensor with shape `[batch_size, input_size]`.
            states (list): A list containing states for all cells orderly.
            **kwargs: Additional keyword arguments, which passed to `cell.forward`
                for all including cells.

        Returns:
            tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` is \
                a tensor with shape `[batch_size, hidden_size]`, corresponding \
                to :math:`h_{t}` in the formula of the last LSTM; `new_states` \
                is a list composed of every LSTM `new_states` which is a pair \
                of tensors standing for :math:`h_{t}, c_{t}` in the formula, \
                and the data type and structure of these tensors all is same \
                as that of `states`.
        """
        new_states = []
        for i, cell in enumerate(self.cells):
            outputs, new_state = cell(inputs, states[i])
            outputs = layers.dropout(
                outputs,
                self.dropout[i],
                dropout_implementation='upscale_in_train') if self.dropout[
                    i] > 0 else outputs
            inputs = outputs
            new_states.append(new_state)
        return outputs, new_states

    @property
    def state_shape(self):
        """
        The `state_shape` of StackedLSTMCell is a list composed of each including
        LSTM cell's `state_shape`.

        Returns:
            list: A list composed of each including LSTM cell's `state_shape`.
        """
        return [cell.state_shape for cell in self.cells]


class LSTM(Layer):
    """
    Applies a stacked multi-layer long short-term memory (LSTM) RNN to an input
    sequence.

    The formula for LSTM used here is as follows:

    .. math::

        i_{t} & = act_g(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})

        f_{t} & = act_g(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias)

        c_{t} & = f_{t}c_{t-1} + i_{t} act_c (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})

        o_{t} & = act_g(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})

        h_{t} & = o_{t} act_c (c_{t})


    Parameters:
        input_size (int): The input feature size for the first LSTM.
        hidden_size (int): The hidden size for every LSTM.
        gate_activation (function, optional): The activation function for gates
            of LSTM, that is :math:`act_g` in the formula. Default: None,
            representing for `fluid.layers.sigmoid`.
        activation (function, optional): The non-gate activation function of
            LSTM, that is :math:`act_c` in the formula. Default: None,
            representing for 'fluid.layers.tanh'.
        forget_bias (float, optional): forget bias used when computing forget
            gate. It also can accept a boolean value `True`, which would set
            :math:`forget\\_bias` as 0 but initialize :math:`b_{f}` as 1 and
            :math:`b_{i}, b_{f}, b_{c}, b_{0}` as 0. This is recommended in
            http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf .
            Default 1.0.
        num_layers(int, optional): The number of LSTM to be stacked. Default 1.
        dropout(float|list|tuple, optional): The dropout probability after each
            LSTM. It also can be a list or tuple, including dropout probabilities
            for the corresponding LSTM. Default 0.0
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Default: `False`.
        time_major (bool, optional): Indicate the data layout of Tensor included
            in `input` and `output` tensors. If `False`, the data layout would
            be batch major with shape `[batch_size, sequence_length, ...]`.  If
            `True`, the data layout would be time major with shape
            `[sequence_length, batch_size, ...]`. Default: `False`.
        param_attr (list|tuple|ParamAttr): A list, tuple or something can be
            converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is
            a list or tuple, it's length must equal to `num_layers`. Otherwise,
            construct a list by `StackedRNNCell.stack_param_attr(param_attr, num_layers)`.
            Default None.
        bias_attr (list|tuple|ParamAttr): A list, tuple or something can be
            converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is
            a list or tuple, it's length must equal to `num_layers`. Otherwise,
            construct a list by `StackedRNNCell.stack_param_attr(bias_attr, num_layers)`.
            Default None.
        dtype(string, optional): The data type used in this cell. It can be
            float32 or float64. Default float32.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import LSTM

            inputs = paddle.rand((2, 4, 32))
            lstm = LSTM(input_size=32, hidden_size=64, num_layers=2)
            outputs, _ = lstm(inputs)  # [2, 4, 64]
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 gate_activation=None,
                 activation=None,
                 forget_bias=1.0,
                 num_layers=1,
                 dropout=0.0,
                 is_reverse=False,
                 time_major=False,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(LSTM, self).__init__()
        lstm_cell = StackedLSTMCell(input_size, hidden_size, gate_activation,
                                    activation, forget_bias, num_layers,
                                    dropout, param_attr, bias_attr, dtype)
        self.lstm = RNN(lstm_cell, is_reverse, time_major)

    def forward(self, inputs, initial_states=None, sequence_length=None):
        """
        Performs the stacked multi-layer LSTM layer by layer. Each LSTM's `outputs`
        is the `inputs` of the subsequent one.

        Parameters:
            inputs (Variable): The inputs for the first LSTM. It is a float32
                or float64 tensor shaped `[batch_size, sequence_length, input_size]`.
            initial_states (list|None, optional): A list containing initial states 
                of all stacked LSTM, and the initial states of each LSTM is a pair
                of tensors shaped `[batch_size, hidden_size]`. If not provided,
                use 0 as initial states. Default None.
            sequence_length (Variable, optional): A tensor with shape `[batch_size]`.
                It stores real length of each instance, thus enables users to extract
                the last valid state when past a batch element's sequence length for
                correctness. If not provided, the paddings would be treated same as
                non-padding inputs. Default None.

        Returns:
            tuple: A tuple( :code:`(outputs, final_states)` ), where `outputs` \
                is the output of last LSTM and it is a tensor with shape \
                `[batch_size, sequence_length, hidden_size]` and has the same \
                data type as `inputs`, `final_states` is the counterpart of \
                `initial_states` at last time step, thus has the same structure \
                with it and has tensors with same shapes data types. 
        """
        return self.lstm(inputs, initial_states, sequence_length)


class BidirectionalRNN(Layer):
    """
    Wrapper for bidirectional RNN. It assembles two RNNCell instances to perform
    forward and backward RNN separately, and merge outputs of these two RNN
    according to `merge_mode`.

    Parameters:
        cell_fw (RNNCell): A RNNCell instance used for forward RNN.
        cell_bw (RNNCell): A RNNCell instance used for backward RNN.
        merge_mode (str|None, optional): The way to merget outputs of forward and
            backward RNN. It can be `concat`, `sum`, `ave`, `mul`, `zip` and None,
            where None stands for make the two `outputs` as a tuple, `zip` stands
            for make each two corresponding tensors of the two `outputs` as a tuple.
            Default `concat`

    Examples:

        .. code-block:: python

            import paddle
            from paddle.incubate.hapi.text import StackedLSTMCell, BidirectionalRNN

            inputs = paddle.rand((2, 4, 32))
            cell_fw = StackedLSTMCell(32, 64)
            cell_bw = StackedLSTMCell(32, 64)
            bi_rnn = BidirectionalRNN(cell_fw, cell_bw)
            outputs, _ = bi_rnn(inputs)  # [2, 4, 128]
    """

    def __init__(self,
                 cell_fw,
                 cell_bw,
                 merge_mode='concat',
                 time_major=False,
                 cell_cls=None,
                 **kwargs):
        super(BidirectionalRNN, self).__init__()
        self.rnn_fw = RNN(cell_fw, is_reverse=False, time_major=time_major)
        self.rnn_bw = RNN(cell_bw, is_reverse=True, time_major=time_major)
        if merge_mode == 'concat':
            self.merge_func = lambda x, y: layers.concat([x, y], -1)
        elif merge_mode == 'sum':
            self.merge_func = lambda x, y: layers.elementwise_add(x, y)
        elif merge_mode == 'ave':
            self.merge_func = lambda x, y: layers.scale(
                layers.elementwise_add(x, y), 0.5)
        elif merge_mode == 'mul':
            self.merge_func = lambda x, y: layers.elementwise_mul(x, y)
        elif merge_mode == 'zip':
            self.merge_func = lambda x, y: (x, y)
        elif merge_mode is None:
            self.merge_func = None
        else:
            raise ValueError('Unsupported value for `merge_mode`: %s' %
                             merge_mode)

    def forward(self,
                inputs,
                initial_states=None,
                sequence_length=None,
                **kwargs):
        """
        Performs forward and backward RNN separately, and merge outputs of these
        two RNN according to `merge_mode`.

        Parameters:
            inputs (Variable): A (possibly nested structure of) tensor variable[s]. 
                The shape of tensor should be `[batch_size, sequence_length, ...]`
                for `time_major == False` or `[sequence_length, batch_size, ...]`
                for `time_major == True`. It represents the inputs to be unrolled
                in both forward and backward RNN.
            initial_states (Variable|list|tuple): If it is a list or tuple, its
                length should be 2 to include initial states of forward and backward
                RNN separately. Otherwise it would be used twice for the two RNN. 
                If None, `cell.get_initial_states` would be used to produce the initial
                states. Default None.
            sequence_length (Variable, optional): A tensor with shape `[batch_size]`.
                It stores real length of each instance, thus enables users to extract
                the last valid state when past a batch element's sequence length for
                correctness. If not provided, the paddings would be treated same as
                non-padding inputs. Default None.
            **kwargs: Additional keyword arguments. Arguments passed to `cell.forward`.

        Returns:
            tuple: A tuple( :code:`(outputs, final_states)` ), where `outputs` \
                is produced by merge outputs of forward and backward RNN according \
                to `merge_mode`, `final_states` is a pair including `final_states` \
                of forward and backward RNN.
        """
        if isinstance(initial_states, (list, tuple)):
            assert len(
                initial_states
            ) == 2, "length of initial_states should be 2 when it is a list/tuple"
        else:
            initial_states = [initial_states, initial_states]
        outputs_fw, states_fw = self.rnn_fw(inputs, initial_states[0],
                                            sequence_length, **kwargs)
        outputs_bw, states_bw = self.rnn_bw(inputs, initial_states[1],
                                            sequence_length, **kwargs)
        outputs = map_structure(self.merge_func, outputs_fw,
                                outputs_bw) if self.merge_func else (outputs_fw,
                                                                     outputs_bw)
        return outputs, (states_fw, states_bw)

    @staticmethod
    def bidirect_param_attr(param_attr):
        """
        Converts `param_attr` to a pair of `param_attr` when it is not a list
        or tuple with length 2, also rename every one by appending a suffix to
        avoid having same names when `param_attr` contains a name.

        Parameters:
            param_attr (list|tuple|ParamAttr): A list, tuple or something can be
                converted to a ParamAttr instance by `ParamAttr._to_attr`. When
                it is a list or tuple, its length must be 2.

        Returns:
            list: A pair composed of forward and backward RNN cell's `param_attr`.
        """
        if isinstance(param_attr, (list, tuple)):
            assert len(
                param_attr
            ) == 2, "length of param_attr should be 2 when it is a list/tuple"
            param_attrs = param_attr
        else:
            param_attrs = []
            attr = fluid.ParamAttr._to_attr(param_attr)
            attr_fw = copy.deepcopy(attr)
            if attr.name:
                attr_fw.name = attr_fw.name + "_fw"
            param_attrs.append(attr_fw)
            attr_bw = copy.deepcopy(attr)
            if attr.name:
                attr_bw.name = attr_bw.name + "_bw"
            param_attrs.append(attr_bw)
        return param_attrs


class BidirectionalLSTM(Layer):
    """
    Applies a bidirectional multi-layer long short-term memory (LSTM) RNN to an
    input sequence. 
    
    Bidirection interaction can happen after each layer or only after the last
    layer according to the  `merge_each_layer` setting. The way to interact,
    that is how to merge outputs of the two direction, is determined by `merge_mode`.

    The formula for LSTM used here is as follows:

    .. math::

        i_{t} & = act_g(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})

        f_{t} & = act_g(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias)

        c_{t} & = f_{t}c_{t-1} + i_{t} act_c (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})

        o_{t} & = act_g(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})

        h_{t} & = o_{t} act_c (c_{t})


    Parameters:
        input_size (int): The input feature size for the first LSTM.
        hidden_size (int): The hidden size for every LSTM.
        gate_activation (function, optional): The activation function for gates
            of LSTM, that is :math:`act_g` in the formula. Default: None,
            representing for `fluid.layers.sigmoid`.
        activation (function, optional): The non-gate activation function of
            LSTM, that is :math:`act_c` in the formula. Default: None,
            representing for 'fluid.layers.tanh'.
        forget_bias (float, optional): forget bias used when computing forget
            gate. It also can accept a boolean value `True`, which would set
            :math:`forget\\_bias` as 0 but initialize :math:`b_{f}` as 1 and
            :math:`b_{i}, b_{f}, b_{c}, b_{0}` as 0. This is recommended in
            http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf .
            Default 1.0.
        num_layers(int, optional): The number of LSTM to be stacked. Default 1.
        dropout(float|list|tuple, optional): The dropout probability after each
            LSTM. It also can be a list or tuple, including dropout probabilities
            for the corresponding LSTM. Default 0.0
        merge_mode (str|None, optional): The way to merget outputs of forward and
            backward RNN. It can be `concat`, `sum`, `ave`, `mul`, `zip` and None,
            where None stands for make the two `outputs` as a tuple, `zip` stands
            for make each two corresponding tensors of the two `outputs` as a tuple.
            Default `concat`
        merge_each_layer (bool, optional): Indicate whether bidirection interaction
            happens after each layer or only after the last layer. Default: `False`.
        time_major (bool, optional): Indicate the data layout of Tensor included
            in `input` and `output` tensors. If `False`, the data layout would
            be batch major with shape `[batch_size, sequence_length, ...]`.  If
            `True`, the data layout would be time major with shape
            `[sequence_length, batch_size, ...]`. Default: `False`.
        param_attr (list|tuple|ParamAttr): A list, tuple or something can be
            converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is
            a list or tuple, it's length must equal to `num_layers`. Otherwise,
            construct a list by `StackedRNNCell.stack_param_attr(param_attr, num_layers)`.
            Default None.
        bias_attr (list|tuple|ParamAttr): A list, tuple or something can be
            converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is
            a list or tuple, it's length must equal to `num_layers`. Otherwise,
            construct a list by `StackedRNNCell.stack_param_attr(bias_attr, num_layers)`.
            Default None.
        dtype(string, optional): The data type used in this cell. It can be
            float32 or float64. Default float32.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import BidirectionalLSTM

            inputs = paddle.rand((2, 4, 32))
            bi_lstm = BidirectionalLSTM(input_size=32, hidden_size=64, num_layers=2)
            outputs, _ = bi_lstm(inputs)  # [2, 4, 128]
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 gate_activation=None,
                 activation=None,
                 forget_bias=1.0,
                 num_layers=1,
                 dropout=0.0,
                 merge_mode='concat',
                 merge_each_layer=False,
                 time_major=False,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(BidirectionalLSTM, self).__init__()
        self.num_layers = num_layers
        self.merge_mode = merge_mode
        self.merge_each_layer = merge_each_layer
        param_attrs = BidirectionalRNN.bidirect_param_attr(param_attr)
        bias_attrs = BidirectionalRNN.bidirect_param_attr(bias_attr)
        if not merge_each_layer:
            cell_fw = StackedLSTMCell(input_size, hidden_size, gate_activation,
                                      activation, forget_bias, num_layers,
                                      dropout, param_attrs[0], bias_attrs[0],
                                      dtype)
            cell_bw = StackedLSTMCell(input_size, hidden_size, gate_activation,
                                      activation, forget_bias, num_layers,
                                      dropout, param_attrs[1], bias_attrs[1],
                                      dtype)
            self.lstm = BidirectionalRNN(
                cell_fw, cell_bw, merge_mode=merge_mode, time_major=time_major)
        else:
            fw_param_attrs = StackedRNNCell.stack_param_attr(param_attrs[0],
                                                             num_layers)
            bw_param_attrs = StackedRNNCell.stack_param_attr(param_attrs[1],
                                                             num_layers)
            fw_bias_attrs = StackedRNNCell.stack_param_attr(bias_attrs[0],
                                                            num_layers)
            bw_bias_attrs = StackedRNNCell.stack_param_attr(bias_attrs[1],
                                                            num_layers)

            # maybe design cell including both forward and backward later
            self.lstm = []
            for i in range(num_layers):
                cell_fw = StackedLSTMCell(
                    input_size
                    if i == 0 else (hidden_size * 2
                                    if merge_mode == 'concat' else hidden_size),
                    hidden_size, gate_activation, activation, forget_bias, 1,
                    dropout, fw_param_attrs[i], fw_bias_attrs[i], dtype)
                cell_bw = StackedLSTMCell(
                    input_size
                    if i == 0 else (hidden_size * 2
                                    if merge_mode == 'concat' else hidden_size),
                    hidden_size, gate_activation, activation, forget_bias, 1,
                    dropout, bw_param_attrs[i], bw_bias_attrs[i], dtype)
                self.lstm.append(
                    self.add_sublayer(
                        "lstm_%d" % i,
                        BidirectionalRNN(
                            cell_fw,
                            cell_bw,
                            merge_mode=merge_mode,
                            time_major=time_major)))

    def forward(self, inputs, initial_states=None, sequence_length=None):
        """
        Performs bidirectional multi-layer LSTM layer by layer. Each LSTM's `outputs`
        is the `inputs` of the subsequent one, or when `merge_each_layer` is True,
        merged outputs would be the `inputs` of the subsequent one.

        Parameters:
            inputs (Variable): The inputs for the first LSTM. It is a float32
                or float64 tensor shaped `[batch_size, sequence_length, input_size]`.
            initial_states (list|None, optional): A list containing initial states 
                of all stacked LSTM. If `merge_each_layer` is True, the length of
                list should be `num_layers` and a single value would be reused for
                `num_layers`; Otherwise, the length should be 2 and a single value
                would be reused twice. If not provided, use 0 as initial states.
                Default None.
            sequence_length (Variable, optional): A tensor with shape `[batch_size]`.
                It stores real length of each instance, thus enables users to extract
                the last valid state when past a batch element's sequence length for
                correctness. If not provided, the paddings would be treated same as
                non-padding inputs. Default None.

        Returns:
            tuple: A tuple( :code:`(outputs, final_states)` ), where `outputs` \
                is the output of last bidirectional LSTM; `final_states` is a \
                pair including `final_states` of forward and backward LSTM when \
                `merge_each_layer` is False or a list including `final_states` \
                of all stacked bidirectional LSTM, and it has tensors with same \
                shapes data types as `initial_states`.
        """
        if not self.merge_each_layer:
            return self.lstm(inputs, initial_states, sequence_length)
        else:
            if isinstance(initial_states, (list, tuple)):
                assert len(initial_states) == self.num_layers, (
                    "length of initial_states should be %d when it is a list/tuple"
                    % self.num_layers)
            else:
                initial_states = [initial_states] * self.num_layers
            stacked_states = []
            for i in range(self.num_layers):
                outputs, states = self.lstm[i](inputs, initial_states[i],
                                               sequence_length)
                inputs = outputs
                stacked_states.append(states)
            return outputs, stacked_states


class StackedGRUCell(RNNCell):
    """
    Wrapper allowing a stack of GRU cells to behave as a single cell. It is used
    to implement stacked GRU.

    The formula for GRU used here is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}


    Parameters:
        input_size (int): The input size for the first GRU cell.
        hidden_size (int): The hidden size for every GRU cell.
        gate_activation (function, optional): The activation function for gates
            of GRU, that is :math:`act_g` in the formula. Default: None,
            representing for `fluid.layers.sigmoid`.
        activation (function, optional): The non-gate activation function of
            GRU, that is :math:`act_c` in the formula. Default: None,
            representing for 'fluid.layers.tanh'.
        num_layers(int, optional): The number of LSTM to be stacked. Default 1.
        dropout(float|list|tuple, optional): The dropout probability after each
            GRU. It also can be a list or tuple, including dropout probabilities
            for the corresponding GRU. Default 0.0
        param_attr (list|tuple|ParamAttr): A list, tuple or something can be
            converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is
            a list or tuple, it's length must equal to `num_layers`. Otherwise,
            construct a list by `StackedRNNCell.stack_param_attr(param_attr, num_layers)`.
            Default None.
        bias_attr (list|tuple|ParamAttr): A list, tuple or something can be
            converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is
            a list or tuple, it's length must equal to `num_layers`. Otherwise,
            construct a list by `StackedRNNCell.stack_param_attr(bias_attr, num_layers)`.
            Default None.
        dtype(string, optional): The data type used in this cell. It can be
            float32 or float64. Default float32.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import StackedGRUCell, RNN

            inputs = paddle.rand((2, 4, 32))
            cell = StackedGRUCell(input_size=32, hidden_size=64)
            rnn = RNN(cell=cell)
            outputs, _ = rnn(inputs)  # [2, 4, 64]
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 gate_activation=None,
                 activation=None,
                 num_layers=1,
                 dropout=0.0,
                 param_attr=None,
                 bias_attr=None,
                 dtype="float32"):
        super(StackedGRUCell, self).__init__()
        self.dropout = utils.convert_to_list(dropout, num_layers, "dropout",
                                             float)
        param_attrs = StackedRNNCell.stack_param_attr(param_attr, num_layers)
        bias_attrs = StackedRNNCell.stack_param_attr(bias_attr, num_layers)

        self.cells = []
        for i in range(num_layers):
            self.cells.append(
                self.add_sublayer(
                    "gru_%d" % i,
                    BasicGRUCell(
                        input_size=input_size if i == 0 else hidden_size,
                        hidden_size=hidden_size,
                        gate_activation=gate_activation,
                        activation=activation,
                        param_attr=param_attrs[i],
                        bias_attr=bias_attrs[i],
                        dtype=dtype)))

    def forward(self, inputs, states):
        """
        Performs the stacked GRU cells sequentially. Each cell's `inputs` is
        the `outputs` of the previous cell. And each cell's `states` is the
        corresponding one in `states`.

        Parameters:
            inputs (Variable): The inputs for the first cell. It is a float32 or
                float64 tensor with shape `[batch_size, input_size]`.
            states (list): A list containing states for all cells orderly.
            **kwargs: Additional keyword arguments, which passed to `cell.forward`
                for all including cells.

        Returns:
            tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` is \
                a tensor with shape `[batch_size, hidden_size]`, corresponding \
                to :math:`h_{t}` in the formula of the last GRU; `new_states` \
                is a list composed of every GRU `new_states` which is also \
                :math:`h_{t}` in the formula, and the data type and structure \
                of these tensors all is same as that of `states`.
        """
        new_states = []
        for i, cell in enumerate(self.cells):
            outputs, new_state = cell(inputs, states[i])
            outputs = layers.dropout(
                outputs,
                self.dropout[i],
                dropout_implementation='upscale_in_train') if self.dropout[
                    i] > 0 else outputs
            inputs = outputs
            new_states.append(new_state)
        return outputs, new_states

    @property
    def state_shape(self):
        """
        The `state_shape` of StackedGRUCell is a list composed of each including
        GRU cell's `state_shape`.

        Returns:
            list: A list composed of each including GRU cell's `state_shape`.
        """
        return [cell.state_shape for cell in self.cells]


class GRU(Layer):
    """
    Applies a stacked multi-layer gated recurrent unit (GRU) RNN to an input
    sequence.

    The formula for GRU used here is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}


    Parameters:
        input_size (int): The input feature size for the first GRU cell.
        hidden_size (int): The hidden size for every GRU cell.
        gate_activation (function, optional): The activation function for gates
            of GRU, that is :math:`act_g` in the formula. Default: None,
            representing for `fluid.layers.sigmoid`.
        activation (function, optional): The non-gate activation function of
            GRU, that is :math:`act_c` in the formula. Default: None,
            representing for 'fluid.layers.tanh'.
        num_layers(int, optional): The number of GRU to be stacked. Default 1.
        dropout(float|list|tuple, optional): The dropout probability after each
            GRU. It also can be a list or tuple, including dropout probabilities
            for the corresponding GRU. Default 0.0
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Default: `False`.
        time_major (bool, optional): Indicate the data layout of Tensor included
            in `input` and `output` tensors. If `False`, the data layout would
            be batch major with shape `[batch_size, sequence_length, ...]`.  If
            `True`, the data layout would be time major with shape
            `[sequence_length, batch_size, ...]`. Default: `False`.
        param_attr (list|tuple|ParamAttr): A list, tuple or something can be
            converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is
            a list or tuple, it's length must equal to `num_layers`. Otherwise,
            construct a list by `StackedRNNCell.stack_param_attr(param_attr, num_layers)`.
            Default None.
        bias_attr (list|tuple|ParamAttr): A list, tuple or something can be
            converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is
            a list or tuple, it's length must equal to `num_layers`. Otherwise,
            construct a list by `StackedRNNCell.stack_param_attr(bias_attr, num_layers)`.
            Default None.
        dtype(string, optional): The data type used in this cell. It can be
            float32 or float64. Default float32.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import GRU

            inputs = paddle.rand((2, 4, 32))
            gru = GRU(input_size=32, hidden_size=64, num_layers=2)
            outputs, _ = gru(inputs)  # [2, 4, 64]
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 gate_activation=None,
                 activation=None,
                 num_layers=1,
                 dropout=0.0,
                 is_reverse=False,
                 time_major=False,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(GRU, self).__init__()
        gru_cell = StackedGRUCell(input_size, hidden_size, gate_activation,
                                  activation, num_layers, dropout, param_attr,
                                  bias_attr, dtype)
        self.gru = RNN(gru_cell, is_reverse, time_major)

    def forward(self, inputs, initial_states=None, sequence_length=None):
        """
        Performs the stacked multi-layer GRU layer by layer. Each GRU's `outputs`
        is the `inputs` of the subsequent one.

        Parameters:
            inputs (Variable): The inputs for the first GRU. It is a float32
                or float64 tensor shaped `[batch_size, sequence_length, input_size]`.
            initial_states (list|None, optional): A list containing initial states 
                of all stacked GRU, and the initial states of each GRU is a tensor
                shaped `[batch_size, hidden_size]`. If not provided, use 0 as initial
                states. Default None.
            sequence_length (Variable, optional): A tensor with shape `[batch_size]`.
                It stores real length of each instance, thus enables users to extract
                the last valid state when past a batch element's sequence length for
                correctness. If not provided, the paddings would be treated same as
                non-padding inputs. Default None.

        Returns:
            tuple: A tuple( :code:`(outputs, final_states)` ), where `outputs` \
                is the output of last GRU and it is a tensor with shape \
                `[batch_size, sequence_length, hidden_size]` and has the same \
                data type as `inputs`, `final_states` is the counterpart of \
                `initial_states` at last time step, thus has the same structure \
                with it and has tensors with same shapes data types.
        """
        return self.gru(inputs, initial_states, sequence_length)


class BidirectionalGRU(Layer):
    """
    Applies a bidirectional multi-layer gated recurrent unit (GRU) RNN to an input
    sequence.
    
    Bidirection interaction can happen after each layer or only after the last
    layer according to the  `merge_each_layer` setting. The way to interact,
    that is how to merge outputs of the two direction, is determined by `merge_mode`.

    The formula for GRU used here is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}


    Parameters:
        input_size (int): The input feature size  for the first GRU cell.
        hidden_size (int): The hidden size for every GRU cell.
        gate_activation (function, optional): The activation function for gates
            of GRU, that is :math:`act_g` in the formula. Default: None,
            representing for `fluid.layers.sigmoid`.
        activation (function, optional): The non-gate activation function of
            GRU, that is :math:`act_c` in the formula. Default: None,
            representing for 'fluid.layers.tanh'.
        num_layers(int, optional): The number of GRU to be stacked. Default 1.
        dropout(float|list|tuple, optional): The dropout probability after each
            GRU. It also can be a list or tuple, including dropout probabilities
            for the corresponding GRU. Default 0.0
        merge_mode (str|None, optional): The way to merget outputs of forward and
            backward RNN. It can be `concat`, `sum`, `ave`, `mul`, `zip` and None,
            where None stands for make the two `outputs` as a tuple, `zip` stands
            for make each two corresponding tensors of the two `outputs` as a tuple.
            Default `concat`
        merge_each_layer (bool, optional): Indicate whether bidirection interaction
            happens after each layer or only after the last layer. Default: `False`.
        time_major (bool, optional): Indicate the data layout of Tensor included
            in `input` and `output` tensors. If `False`, the data layout would
            be batch major with shape `[batch_size, sequence_length, ...]`.  If
            `True`, the data layout would be time major with shape
            `[sequence_length, batch_size, ...]`. Default: `False`.
        param_attr (list|tuple|ParamAttr): A list, tuple or something can be
            converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is
            a list or tuple, it's length must equal to `num_layers`. Otherwise,
            construct a list by `StackedRNNCell.stack_param_attr(param_attr, num_layers)`.
            Default None.
        bias_attr (list|tuple|ParamAttr): A list, tuple or something can be
            converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is
            a list or tuple, it's length must equal to `num_layers`. Otherwise,
            construct a list by `StackedRNNCell.stack_param_attr(bias_attr, num_layers)`.
            Default None.
        dtype(string, optional): The data type used in this cell. It can be
            float32 or float64. Default float32.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import BidirectionalGRU

            inputs = paddle.rand((2, 4, 32))
            bi_gru = BidirectionalGRU(input_size=32, hidden_size=64, num_layers=2)
            outputs, _ = bi_gru(inputs)  # [2, 4, 128]
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 gate_activation=None,
                 activation=None,
                 forget_bias=1.0,
                 num_layers=1,
                 dropout=0.0,
                 merge_mode='concat',
                 merge_each_layer=False,
                 time_major=False,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(BidirectionalGRU, self).__init__()
        self.num_layers = num_layers
        self.merge_mode = merge_mode
        self.merge_each_layer = merge_each_layer
        param_attrs = BidirectionalRNN.bidirect_param_attr(param_attr)
        bias_attrs = BidirectionalRNN.bidirect_param_attr(bias_attr)
        if not merge_each_layer:
            cell_fw = StackedGRUCell(input_size, hidden_size, gate_activation,
                                     activation, num_layers, dropout,
                                     param_attrs[0], bias_attrs[0], dtype)
            cell_bw = StackedGRUCell(input_size, hidden_size, gate_activation,
                                     activation, num_layers, dropout,
                                     param_attrs[1], bias_attrs[1], dtype)
            self.gru = BidirectionalRNN(
                cell_fw, cell_bw, merge_mode=merge_mode, time_major=time_major)
        else:
            fw_param_attrs = StackedRNNCell.stack_param_attr(param_attrs[0],
                                                             num_layers)
            bw_param_attrs = StackedRNNCell.stack_param_attr(param_attrs[1],
                                                             num_layers)
            fw_bias_attrs = StackedRNNCell.stack_param_attr(bias_attrs[0],
                                                            num_layers)
            bw_bias_attrs = StackedRNNCell.stack_param_attr(bias_attrs[1],
                                                            num_layers)

            # maybe design cell including both forward and backward later
            self.gru = []
            for i in range(num_layers):
                cell_fw = StackedGRUCell(input_size if i == 0 else (
                    hidden_size * 2 if merge_mode == 'concat' else
                    hidden_size), hidden_size, gate_activation, activation, 1,
                                         dropout, fw_param_attrs[i],
                                         fw_bias_attrs[i], dtype)
                cell_bw = StackedGRUCell(input_size if i == 0 else (
                    hidden_size * 2 if merge_mode == 'concat' else
                    hidden_size), hidden_size, gate_activation, activation, 1,
                                         dropout, bw_param_attrs[i],
                                         bw_bias_attrs[i], dtype)
                self.gru.append(
                    self.add_sublayer(
                        "gru_%d" % i,
                        BidirectionalRNN(
                            cell_fw,
                            cell_bw,
                            merge_mode=merge_mode,
                            time_major=time_major)))

    def forward(self, inputs, initial_states=None, sequence_length=None):
        """
        Performs bidirectional multi-layer GRU layer by layer. Each GRU's `outputs`
        is the `inputs` of the subsequent one, or when `merge_each_layer` is True,
        merged outputs would be the `inputs` of the subsequent one.

        Parameters:
            inputs (Variable): The inputs for the first GRU. It is a float32
                or float64 tensor shaped `[batch_size, sequence_length, input_size]`.
            initial_states (list|None, optional): A list containing initial states 
                of all stacked GRU. If `merge_each_layer` is True, the length of
                list should be `num_layers` and a single value would be reused for
                `num_layers`; Otherwise, the length should be 2 and a single value
                would be reused twice. If not provided, use 0 as initial states.
                Default None.
            sequence_length (Variable, optional): A tensor with shape `[batch_size]`.
                It stores real length of each instance, thus enables users to extract
                the last valid state when past a batch element's sequence length for
                correctness. If not provided, the paddings would be treated same as
                non-padding inputs. Default None.

        Returns:
            tuple: A tuple( :code:`(outputs, final_states)` ), where `outputs` \
                is the output of last bidirectional GRU; `final_states` is a \
                pair including `final_states` of forward and backward GRU when \
                `merge_each_layer` is False or a list including `final_states` \
                of all stacked bidirectional GRU, and it has tensors with same \
                shapes data types as `initial_states`.
        """
        if not self.merge_each_layer:
            return self.gru(inputs, initial_states, sequence_length)
        else:
            if isinstance(initial_states, (list, tuple)):
                assert len(initial_states) == self.num_layers, (
                    "length of initial_states should be %d when it is a list/tuple"
                    % self.num_layers)
            else:
                initial_states = [initial_states] * self.num_layers
            stacked_states = []
            for i in range(self.num_layers):
                outputs, states = self.gru[i](inputs, initial_states[i],
                                              sequence_length)
                inputs = outputs
                stacked_states.append(states)
            return outputs, stacked_states


class DynamicDecode(Layer):
    """
    DynamicDecode integrates an Decoder instance to perform dynamic decoding.

    It performs :code:`decoder.step()` repeatedly until the returned Tensor
    indicating finished status contains all True values or the number of
    decoding step reaches to :attr:`max_step_num`.

    :code:`decoder.initialize()` would be called once before the decoding loop.
    If the `decoder` has implemented `finalize` method, :code:`decoder.finalize()`
    would be called once after the decoding loop.

    Parameters:
        decoder (Decoder): An instance of `Decoder`.
        max_step_num (int, optional): The maximum number of steps. If not provided,
            decode until the decoder is fully done, or in other words, the returned
            Tensor by :code:`decoder.step()` indicating finished status contains
            all True. Default `None`.
        output_time_major (bool, optional): Indicate the data layout of Tensor included
            in the final outputs(the first returned value of this method). If
            attr:`False`, the data layout would be batch major with shape
            `[batch_size, seq_len, ...]`.  If attr:`True`, the data layout would
            be time major with shape `[seq_len, batch_size, ...]`. Default: `False`.
        impute_finished (bool, optional): If `True`, then states get copied through
            for batch entries which are marked as finished, which differs with the
            unfinished using the new states returned by :code:`decoder.step()` and
            ensures that the final states have the correct values. Otherwise, states
            wouldn't be copied through when finished. If the returned `final_states`
            is needed, it should be set as True, which causes some slowdown.
            Default `False`.
        is_test (bool, optional): A flag indicating whether to use test mode. In
            test mode, it is more memory saving. Default `False`.
        return_length (bool, optional):  A flag indicating whether to return an
            extra Tensor variable in the output tuple, which stores the actual
            lengths of all decoded sequences. Default `False`.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.fluid.layers import BeamSearchDecoder
            from paddle.incubate.hapi.text import StackedLSTMCell, DynamicDecode

            paddle.enable_dygraph()

            vocab_size, d_model, = 100, 32
            encoder_output = paddle.rand((2, 4, d_model))
            trg_embeder = fluid.dygraph.Embedding(size=[vocab_size, d_model])
            output_layer = fluid.dygraph.Linear(d_model, vocab_size)
            cell = StackedLSTMCell(input_size=d_model, hidden_size=d_model)
            decoder = BeamSearchDecoder(cell,
                                        start_token=0,
                                        end_token=1,
                                        beam_size=4,
                                        embedding_fn=trg_embeder,
                                        output_fn=output_layer)
            dynamic_decoder = DynamicDecode(decoder, max_step_num=10)
            outputs = dynamic_decoder(cell.get_initial_states(encoder_output))
    """

    def __init__(self,
                 decoder,
                 max_step_num=None,
                 output_time_major=False,
                 impute_finished=False,
                 is_test=False,
                 return_length=False):
        super(DynamicDecode, self).__init__()
        self.decoder = decoder
        self.max_step_num = max_step_num
        self.output_time_major = output_time_major
        self.impute_finished = impute_finished
        self.is_test = is_test
        self.return_length = return_length

    def forward(self, inits=None, **kwargs):
        """
        Performs :code:`decoder.step()` repeatedly until the returned Tensor
        indicating finished status contains all True values or the number of
        decoding step reaches to :attr:`max_step_num`.

        :code:`decoder.initialize()` would be called once before the decoding loop.
        If the `decoder` has implemented `finalize` method, :code:`decoder.finalize()`
        would be called once after the decoding loop.

        Parameters:
            inits (object, optional): Argument passed to `decoder.initialize`.
                Default `None`.
            **kwargs: Additional keyword arguments. Arguments passed to `decoder.step`.

        Returns:
            tuple: A tuple( :code:`(final_outputs, final_states, sequence_lengths)` ) \
                when `return_length` is True, otherwise a tuple( :code:`(final_outputs, final_states)` ). \
                The final outputs and states, both are Tensor or nested structure of Tensor. \
                `final_outputs` has the same structure and data types as the :code:`outputs` \
                returned by :code:`decoder.step()` , and each Tenser in `final_outputs` \
                is the stacked of all decoding steps' outputs, which might be revised \
                by :code:`decoder.finalize()` if the decoder has implemented `finalize`. \
                `final_states` is the counterpart at last time step of initial states \
                returned by :code:`decoder.initialize()` , thus has the same structure \
                with it and has tensors with same shapes and data types. `sequence_lengths` \
                is an `int64` tensor with the same shape as `finished` returned \
                by :code:`decoder.initialize()` , and it stores the actual lengths of \
                all decoded sequences.
        """
        if fluid.in_dygraph_mode():

            class ArrayWrapper(object):
                def __init__(self, x):
                    self.array = [x]

                def append(self, x):
                    self.array.append(x)
                    return self

                def __getitem__(self, item):
                    return self.array.__getitem__(item)

            def _maybe_copy(state, new_state, step_mask):
                # TODO: use where_op
                state_dtype = state.dtype
                if convert_dtype(state_dtype) in ["bool"]:
                    state = layers.cast(state, dtype="float32")
                    new_state = layers.cast(new_state, dtype="float32")
                if step_mask.dtype != state.dtype:
                    step_mask = layers.cast(step_mask, dtype=state.dtype)
                    # otherwise, renamed bool gradients of would be summed up leading
                    # to sum(bool) error.
                    step_mask.stop_gradient = True
                new_state = layers.elementwise_mul(
                    state, step_mask, axis=0) - layers.elementwise_mul(
                        new_state, (step_mask - 1), axis=0)
                if convert_dtype(state_dtype) in ["bool"]:
                    new_state = layers.cast(new_state, dtype=state_dtype)
                return new_state

            initial_inputs, initial_states, initial_finished = self.decoder.initialize(
                inits)
            inputs, states, finished = (initial_inputs, initial_states,
                                        initial_finished)
            cond = layers.logical_not((layers.reduce_all(initial_finished)))
            sequence_lengths = layers.cast(
                layers.zeros_like(initial_finished), "int64")
            outputs = None

            step_idx = 0
            step_idx_tensor = layers.fill_constant(
                shape=[1], dtype="int64", value=step_idx)
            while cond.numpy():
                (step_outputs, next_states, next_inputs,
                 next_finished) = self.decoder.step(step_idx_tensor, inputs,
                                                    states, **kwargs)
                if not self.decoder.tracks_own_finished:
                    # BeamSearchDecoder would track it own finished, since
                    # beams would be reordered and the finished status of each
                    # entry might change. Otherwise, perform logical OR which
                    # would not change the already finished.
                    next_finished = layers.logical_or(next_finished, finished)
                    # To confirm states.finished/finished be consistent with
                    # next_finished.
                    layers.assign(next_finished, finished)
                next_sequence_lengths = layers.elementwise_add(
                    sequence_lengths,
                    layers.cast(
                        layers.logical_not(finished), sequence_lengths.dtype))

                if self.impute_finished:  # rectify the states for the finished.
                    next_states = map_structure(
                        lambda x, y: _maybe_copy(x, y, finished), states,
                        next_states)
                outputs = map_structure(
                    lambda x: ArrayWrapper(x),
                    step_outputs) if step_idx == 0 else map_structure(
                        lambda x, x_array: x_array.append(x), step_outputs,
                        outputs)
                inputs, states, finished, sequence_lengths = (
                    next_inputs, next_states, next_finished,
                    next_sequence_lengths)

                layers.increment(x=step_idx_tensor, value=1.0, in_place=True)
                step_idx += 1

                layers.logical_not(layers.reduce_all(finished), cond)
                if self.max_step_num is not None and step_idx > self.max_step_num:
                    break

            final_outputs = map_structure(
                lambda x: fluid.layers.stack(x.array, axis=0), outputs)
            final_states = states

            try:
                final_outputs, final_states = self.decoder.finalize(
                    final_outputs, final_states, sequence_lengths)
            except NotImplementedError:
                pass

            if not self.output_time_major:
                final_outputs = map_structure(
                    lambda x: layers.transpose(x, [1, 0] + list(
                        range(2, len(x.shape)))), final_outputs)

            return (final_outputs, final_states,
                    sequence_lengths) if self.return_length else (final_outputs,
                                                                  final_states)
        else:
            return fluid.layers.dynamic_decode(
                self.decoder,
                inits,
                max_step_num=self.max_step_num,
                output_time_major=self.output_time_major,
                impute_finished=self.impute_finished,
                is_test=self.is_test,
                return_length=self.return_length,
                **kwargs)


class Conv1dPoolLayer(Layer):
    """
    This interface is used to construct a callable object of the ``Conv1DPoolLayer``
    class. The ``Conv1DPoolLayer`` class does a ``Conv1D`` and a ``Pool1D`` .
    For more details, refer to code examples.The ``Conv1DPoolLayer`` layer calculates
    the output based on the input, filter and strides, paddings, dilations, groups,
    global_pooling, pool_type, ceil_mode, exclusive parameters.

    Parameters:
        num_channels (int): The number of channels in the input data.
        num_filters(int): The number of filters. It is the same as the output channels.
        filter_size (int): The filter size of Conv1DPoolLayer.       
        pool_size (int): The pooling size of Conv1DPoolLayer.
        conv_stride (int): The stride size of the conv Layer in Conv1DPoolLayer.
            Default: 1
        pool_stride (int): The stride size of the pool layer in Conv1DPoolLayer.
            Default: 1
        conv_padding (int): The padding size of the conv Layer in Conv1DPoolLayer.
            Default: 0
        pool_padding (int): The padding of pool layer in Conv1DPoolLayer.
            Default: 0
        act (str): Activation type for conv layer, if it is set to None, activation
            is not appended. Default: None.
        pool_type (str): Pooling type can be `max` for max-pooling or `avg` for
            average-pooling. Default: `max`
        dilation (int): The dilation size of the conv Layer. Default: 1.
        groups (int): The groups number of the conv Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the
            first half of the filters is only connected to the first half of the
            input channels, while the second half of the filters is only connected
            to the second half of the input channels. Default: 1.
        global_pooling (bool): Whether to use the global pooling. If it is true, 
                `pool_size` and `pool_padding` would be ignored. Default: False
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output 
                height and width.False is the default. If it is set to False, the floor function 
                will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. 
                Default: True.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: False
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Example:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import Conv1dPoolLayer

            # input: [batch_size, num_channels, sequence_length]
            input = paddle.rand((2, 32, 4))
            cov2d = Conv1dPoolLayer(num_channels=32,
                                    num_filters=64,
                                    filter_size=2,
                                    pool_size=2)
            output = cov2d(input)
    """

    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 pool_size,
                 conv_stride=1,
                 pool_stride=1,
                 conv_padding=0,
                 pool_padding=0,
                 act=None,
                 pool_type='max',
                 global_pooling=False,
                 dilation=1,
                 groups=None,
                 ceil_mode=False,
                 exclusive=True,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(Conv1dPoolLayer, self).__init__()
        self._conv2d = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=[filter_size, 1],
            stride=[conv_stride, 1],
            padding=[conv_padding, 0],
            dilation=[dilation, 1],
            groups=groups,
            param_attr=param_attr,
            bias_attr=bias_attr,
            use_cudnn=use_cudnn,
            act=act)
        self._pool2d = Pool2D(
            pool_size=[pool_size, 1],
            pool_type=pool_type,
            pool_stride=[pool_stride, 1],
            pool_padding=[pool_padding, 0],
            global_pooling=global_pooling,
            use_cudnn=use_cudnn,
            ceil_mode=ceil_mode,
            exclusive=exclusive)

    def forward(self, input):
        """
        Performs conv1d and pool1d on the input.

        Parameters:
            input (Variable): A 3-D Tensor, shape is [N, C, H] where N, C and H
                representing `batch_size`, `num_channels` and `sequence_length`
                separately. data type can be float32 or float64
        
        Returns:
            Variable: The 3-D output tensor after conv and pool. It has the same \
                data type as input.
        """
        x = fluid.layers.unsqueeze(input, axes=[-1])
        x = self._conv2d(x)
        x = self._pool2d(x)
        x = fluid.layers.squeeze(x, axes=[-1])
        return x


class CNNEncoder(Layer):
    """
    This interface is used to construct a callable object of the ``CNNEncoder``
    class. The ``CNNEncoder`` is composed of multiple ``Conv1dPoolLayer`` .
    ``CNNEncoder`` can define every Conv1dPoolLayer with different or same parameters.
    The ``Conv1dPoolLayer`` in ``CNNEncoder`` is parallel. The results of every 
    ``Conv1dPoolLayer`` will concat at the channel dimension as the final output.

    Parameters:
        num_channels(int|list|tuple): The number of channels in the input data. If
            `num_channels` is a list or tuple, the length of `num_channels` must
            equal to `num_layers`. If `num_channels` is a int, all conv1dpoollayer's
            `num_channels` are the value of `num_channels`. 
        num_filters(int|list|tuple): The number of filters. It is the same as the
            output channels. If `num_filters` is a list or tuple, the length of
            `num_filters` must equal `num_layers`. If `num_filters` is a int,
            all conv1dpoollayer's `num_filters` are the value of `num_filters`.
        filter_size(int|list|tuple): The filter size of Conv1DPoolLayer in CNNEncoder.
            If `filter_size` is a list or tuple, the length of `filter_size` must
            equal `num_layers`. If `filter_size` is a int, all conv1dpoollayer's
            `filter_size` are the value of `filter_size`. 
        pool_size(int|list|tuple): The pooling size of Conv1DPoolLayer in CNNEncoder.
            If `pool_size` is a list or tuple, the length of `pool_size` must equal
            `num_layers`. If `pool_size` is a int, all conv1dpoollayer's `pool_size`
            are the value of `pool_size`.
        num_layers(int): The number of conv1dpoolLayer used in CNNEncoder.
        conv_stride(int|list|tuple): The stride size of the conv Layer in Conv1DPoolLayer.
            If `conv_stride` is a list or tuple, the length of `conv_stride` must
            equal `num_layers`. If conv_stride is a int, all conv1dpoollayer's `conv_stride`
            are the value of `conv_stride`. Default: 1
        pool_stride(int|list|tuple): The stride size of the pool layer in Conv1DPoolLayer.
            If `pool_stride` is a list or tuple, the length of `pool_stride` must
            equal `num_layers`. If `pool_stride` is a int, all conv1dpoollayer's `pool_stride`
            are the value of `pool_stride`. Default: 1
        conv_padding(int|list|tuple): The padding size of the conv Layer in Conv1DPoolLayer.
            If `conv_padding` is a list or tuple, the length of `conv_padding` must
            equal `num_layers`. If `conv_padding` is a int, all conv1dpoollayer's `conv_padding`
            are the value of `conv_padding`. Default: 0
        pool_padding(int|list|tuple): The padding size of pool layer in Conv1DPoolLayer.
            If `pool_padding` is a list or tuple, the length of `pool_padding` must
            equal `num_layers`.If `pool_padding` is a int, all conv1dpoollayer's `pool_padding`
            are the value of `pool_padding`. Default: 0
        act (str|list|tuple): Activation type for `Conv1dPoollayer` layer, if it is set to None,
            activation is not appended. Default: None.
        pool_type (str): Pooling type can be `max` for max-pooling or `avg` for
            average-pooling. Default: `max`
        global_pooling (bool): Whether to use the global pooling. If it is true, 
            `pool_size` and `pool_padding` would be ignored. Default: False
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: False
    
    Example:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import CNNEncoder

            # input: [batch_size, num_channels, sequence_length]
            input = paddle.rand((2, 32, 8))
            cov_encoder = CNNEncoder(num_layers=2,
                                     num_channels=32,
                                     num_filters=64,
                                     filter_size=[2, 3],
                                     pool_size=[7, 6])
            output = cov_encoder(input)  # [2, 128, 1]
    """

    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 pool_size,
                 num_layers=1,
                 conv_stride=1,
                 pool_stride=1,
                 conv_padding=0,
                 pool_padding=0,
                 act=None,
                 pool_type='max',
                 global_pooling=False,
                 use_cudnn=False):
        super(CNNEncoder, self).__init__()
        self.num_layers = num_layers
        self.num_channels = num_channels
        self.num_filters = num_filters
        self.filter_size = filter_size
        self.pool_size = pool_size
        self.conv_stride = conv_stride
        self.pool_stride = pool_stride
        self.conv_padding = conv_padding
        self.pool_padding = pool_padding
        self.use_cudnn = use_cudnn
        self.act = act
        self.pool_type = pool_type
        self.global_pooling = global_pooling
        self.conv1d_pool_layers = fluid.dygraph.LayerList([
            Conv1dPoolLayer(
                num_channels=self.num_channels
                if isinstance(self.num_channels, int) else self.num_channels[i],
                num_filters=self.num_filters
                if isinstance(self.num_channels, int) else self.num_filters[i],
                filter_size=self.filter_size
                if isinstance(self.filter_size, int) else self.filter_size[i],
                pool_size=self.pool_size
                if isinstance(self.pool_size, int) else self.pool_size[i],
                conv_stride=self.conv_stride
                if isinstance(self.conv_stride, int) else self.conv_stride[i],
                pool_stride=self.pool_stride
                if isinstance(self.pool_stride, int) else self.pool_stride[i],
                conv_padding=self.conv_padding
                if isinstance(self.conv_padding, int) else self.conv_padding[i],
                pool_padding=self.pool_padding
                if isinstance(self.pool_padding, int) else self.pool_padding[i],
                act=self.act[i]
                if isinstance(self.act, (list, tuple)) else self.act,
                pool_type=self.pool_type,
                global_pooling=self.global_pooling,
                use_cudnn=self.use_cudnn) for i in range(num_layers)
        ])

    def forward(self, input):
        """
        Performs multiple parallel conv1d and pool1d, and concat the results of
        them at the channel dimension to produce the final output.

        Parameters:
            input (Variable): A 3-D Tensor, shape is [N, C, H] where N, C and H
                representing `batch_size`, `num_channels` and `sequence_length`
                separately. data type can be float32 or float64
        
        Returns:
            Variable: The 3-D output tensor produced by concatenating results of \
                all Conv1dPoolLayer. It has the same data type as input.
        """
        res = [
            conv1d_pool_layer(input)
            for conv1d_pool_layer in self.conv1d_pool_layers
        ]
        out = fluid.layers.concat(input=res, axis=1)
        return out


class TransformerCell(RNNCell):
    """
    TransformerCell wraps a Transformer decoder producing logits from `inputs`
    composed by ids and position.

    Parameters:
        decoder(callable): A TransformerDecoder instance. Or a wrapper of it that
            includes a embedding layer accepting ids and positions instead of embeddings
            and includes a output layer transforming decoder output features to logits.
        embedding_fn(function, optional): A callable that accepts ids and position
            as arguments and return embeddings as input of `decoder`. It can be
            None if `decoder` includes a embedding layer. Default None.
        output_fn(callable, optional): A callable applid on `decoder` output to
            transform decoder output features to get logits. Mostly it is a Linear
            layer with vocabulary size. It can be None if `decoder` includes a
            output layer. Default None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.fluid.dygraph import Embedding, Linear
            from paddle.incubate.hapi.text import TransformerDecoder
            from paddle.incubate.hapi.text import TransformerCell
            from paddle.incubate.hapi.text import TransformerBeamSearchDecoder
            from paddle.incubate.hapi.text import DynamicDecode

            paddle.enable_dygraph()

            class Embedder(fluid.dygraph.Layer):
                def __init__(self):
                    super(Embedder, self).__init__()
                    self.word_embedder = Embedding(size=[1000, 128])
                    self.pos_embedder = Embedding(size=[500, 128])

                def forward(self, word, position):
                    return self.word_embedder(word) + self.pos_embedder(position)

            embedder = Embedder()
            output_layer = Linear(128, 1000)
            decoder = TransformerDecoder(2, 2, 64, 64, 128, 512)
            transformer_cell = TransformerCell(decoder, embedder, output_layer)
            dynamic_decoder = DynamicDecode(
                TransformerBeamSearchDecoder(
                    transformer_cell,
                    start_token=0,
                    end_token=1,
                    beam_size=4,
                    var_dim_in_state=2),
                max_step_num=10,
                is_test=True)
            
            enc_output = paddle.rand((2, 4, 128))
            # cross attention bias: [batch_size, n_head, trg_len, src_len]
            trg_src_attn_bias = paddle.rand((2, 2, 1, 4))
            # inputs for beam search on Transformer
            caches = transformer_cell.get_initial_states(enc_output)
            enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
                enc_output, beam_size=4)
            trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
                trg_src_attn_bias, beam_size=4)
            static_caches = decoder.prepare_static_cache(enc_output)
            outputs = dynamic_decoder(
                inits=caches,
                enc_output=enc_output,
                trg_src_attn_bias=trg_src_attn_bias,
                static_caches=static_caches)
    """

    def __init__(self, decoder, embedding_fn=None, output_fn=None):
        super(TransformerCell, self).__init__()
        self.decoder = decoder
        self.embedding_fn = embedding_fn
        self.output_fn = output_fn

    def forward(self,
                inputs,
                states=None,
                enc_output=None,
                trg_slf_attn_bias=None,
                trg_src_attn_bias=None,
                static_caches=[]):
        """
        Produces logits from `inputs` composed by ids and positions.

        Parameters:
            inputs(tuple): A tuple includes target ids and positions. The two
                tensors both have int64 data type and with 2D shape 
                `[batch_size, sequence_length]` where `sequence_length` is 1
                for inference.
            states(list): It caches the multi-head attention intermediate results
                of history decoding steps. It is a list of dict where the length
                of list is decoder layer number, and each dict has `k` and `v` as
                keys and values are cached results. Default None
            enc_output(Variable): The output of Transformer encoder. It is a tensor
                with shape `[batch_size, sequence_length, d_model]`. The data type
                should be float32 or float64.
            trg_slf_attn_bias(Variable, optional): A tensor used in decoder self
                attention to mask out attention on unwanted target positions. It
                is a tensor with shape `[batch_size, n_head, target_length, target_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. It can be None when nothing wanted or needed to
                be masked out. It can be None for inference. The data type should
                be float32 or float64. Default None
            trg_src_attn_bias(Variable, optional): A tensor used in decoder-encoder
                cross attention to mask out unwanted attention on source (encoder output).
                It is a tensor with shape `[batch_size, n_head, target_length, source_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. It can be None when nothing wanted or needed to
                be masked out. The data type should be float32 or float64. Default None
            static_caches(list): It stores projected results of encoder output
                to be used as keys and values in decoder-encoder cross attention
                It is a list of dict where the length of list is decoder layer
                number, and each dict has `static_k` and `static_v` as keys and
                values are stored results. Default empty list

        Returns:
            tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` \
                is a float32 or float64 3D tensor representing logits shaped \
                `[batch_size, sequence_length, vocab_size]`. `new_states has \
                the same structure and data type with `states` while the length \
                is one larger since the intermediate results of current step are \
                concatenated into it.
        """
        trg_word, trg_pos = inputs
        if states and static_caches:
            for cache, static_cache in zip(states, static_caches):
                cache.update(static_cache)
        if self.embedding_fn is not None:
            dec_input = self.embedding_fn(trg_word, trg_pos)
            outputs = self.decoder(dec_input, enc_output, None,
                                   trg_src_attn_bias, states)
        else:
            outputs = self.decoder(trg_word, trg_pos, enc_output, None,
                                   trg_src_attn_bias, states)
        if self.output_fn is not None:
            outputs = self.output_fn(outputs)

        new_states = [{
            "k": cache["k"],
            "v": cache["v"]
        } for cache in states] if states else states
        return outputs, new_states

    @property
    def state_shape(self):
        """
        States of TransformerCell cache the multi-head attention intermediate
        results of history decoding steps, and have a increasing length as
        decoding continued.
        
        `state_shape` of TransformerCell is used to initialize states. It is a
        list of dict where the length of list is decoder layer, and each dict
        has `k` and `v` as keys and values are `[n_head, 0, d_key]`, `[n_head, 0, d_value]`
        separately. (-1 for batch size would be automatically inserted into shape).

        Returns:
            list: It is a list of dict where the length of list is decoder layer \
                number, and each dict has `k` and `v` as keys and values are cached \
                results.
        """
        return [{
            "k": [self.decoder.n_head, 0, self.decoder.d_key],
            "v": [self.decoder.n_head, 0, self.decoder.d_value],
        } for i in range(self.decoder.n_layer)]


class TransformerBeamSearchDecoder(layers.BeamSearchDecoder):
    """
    Compared with a RNN step :code:`outputs, new_states = cell(inputs, states)`,
    Transformer decoder's `inputs` uses 2D tensor shaped `[batch_size * beam_size, 1]`
    and includes extra position data. And its `states` (caches) has increasing
    length. These are not consistent with `BeamSearchDecoder`, thus subclass
    `BeamSearchDecoder` to make beam search adapt to Transformer decoder.

    Parameters:
        cell(TransformerCell): An instance of `TransformerCell`.
        start_token(int): The start token id.
        end_token(int): The end token id.
        beam_size(int): The beam width used in beam search.
        var_dim_in_state(int): Indicate which dimension of states is variant.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.fluid.dygraph import Embedding, Linear
            from paddle.incubate.hapi.text import TransformerDecoder
            from paddle.incubate.hapi.text import TransformerCell
            from paddle.incubate.hapi.text import TransformerBeamSearchDecoder
            from paddle.incubate.hapi.text import DynamicDecode

            paddle.enable_dygraph()

            class Embedder(fluid.dygraph.Layer):
                def __init__(self):
                    super(Embedder, self).__init__()
                    self.word_embedder = Embedding(size=[1000, 128])
                    self.pos_embedder = Embedding(size=[500, 128])

                def forward(self, word, position):
                    return self.word_embedder(word) + self.pos_embedder(position)

            embedder = Embedder()
            output_layer = Linear(128, 1000)
            decoder = TransformerDecoder(2, 2, 64, 64, 128, 512)
            transformer_cell = TransformerCell(decoder, embedder, output_layer)
            dynamic_decoder = DynamicDecode(
                TransformerBeamSearchDecoder(
                    transformer_cell,
                    start_token=0,
                    end_token=1,
                    beam_size=4,
                    var_dim_in_state=2),
                max_step_num=10,
                is_test=True)
            
            enc_output = paddle.rand((2, 4, 128))
            # cross attention bias: [batch_size, n_head, trg_len, src_len]
            trg_src_attn_bias = paddle.rand((2, 2, 1, 4))
            # inputs for beam search on Transformer
            caches = transformer_cell.get_initial_states(enc_output)
            enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
                enc_output, beam_size=4)
            trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
                trg_src_attn_bias, beam_size=4)
            static_caches = decoder.prepare_static_cache(enc_output)
            outputs = dynamic_decoder(
                inits=caches,
                enc_output=enc_output,
                trg_src_attn_bias=trg_src_attn_bias,
                static_caches=static_caches)
    """

    def __init__(self, cell, start_token, end_token, beam_size,
                 var_dim_in_state):
        super(TransformerBeamSearchDecoder,
              self).__init__(cell, start_token, end_token, beam_size)
        self.cell = cell
        self.var_dim_in_state = var_dim_in_state

    def _merge_batch_beams_with_var_dim(self, x):
        """
        Reshape a tensor with shape `[batch_size, beam_size, ...]` to a new
        tensor with shape `[batch_size * beam_size, ...]`. 

        Parameters:
            x(Variable): A tensor with shape `[batch_size, beam_size, ...]`. The
                data type should be float32, float64, int32, int64 or bool.

        Returns:
            Variable: A tensor with shape `[batch_size * beam_size, ...]`, whose \
                data type is same as `x`.
        """
        # init length of cache is 0, and it increases with decoding carrying on,
        # thus need to reshape elaborately
        var_dim_in_state = self.var_dim_in_state + 1  # count in beam dim
        x = layers.transpose(x,
                             list(range(var_dim_in_state, len(x.shape))) +
                             list(range(0, var_dim_in_state)))
        x = layers.reshape(
            x, [0] * (len(x.shape) - var_dim_in_state
                      ) + [self.batch_size * self.beam_size] +
            [int(size) for size in x.shape[-var_dim_in_state + 2:]])
        x = layers.transpose(
            x,
            list(range((len(x.shape) + 1 - var_dim_in_state), len(x.shape))) +
            list(range(0, (len(x.shape) + 1 - var_dim_in_state))))
        return x

    def _split_batch_beams_with_var_dim(self, x):
        """
        Reshape a tensor with shape `[batch_size * beam_size, ...]` to a new
        tensor with shape `[batch_size, beam_size, ...]`. 

        Parameters:
            x(Variable): A tensor with shape `[batch_size * beam_size, ...]`. The
                data type should be float32, float64, int32, int64 or bool.

        Returns:
            Variable: A tensor with shape `[batch_size, beam_size, ...]`, whose \
                data type is same as `x`.     
        """
        var_dim_size = layers.shape(x)[self.var_dim_in_state]
        x = layers.reshape(
            x, [-1, self.beam_size] +
            [int(size)
             for size in x.shape[1:self.var_dim_in_state]] + [var_dim_size] +
            [int(size) for size in x.shape[self.var_dim_in_state + 1:]])
        return x

    def step(self, time, inputs, states, **kwargs):
        """
        Perform a beam search decoding step, which uses `cell` to get probabilities,
        and follows a beam search step to calculate scores and select candidate
        token ids.

        Note: compared with `BeamSearchDecoder.step`, it feed 2D id tensor shaped
        `[batch_size * beam_size, 1]` rather than `[batch_size * beam_size]` combined
        position data as inputs to `cell`.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            inputs(Variable): A tensor variable. It is same as `initial_inputs`
                returned by `initialize()` for the first decoding step and
                `next_inputs` returned by `step()` for the others. It is a int64
                id tensor with shape `[batch_size * beam_size]`
            states(Variable): A structure of tensor variables.
                It is same as the `initial_states` returned by `initialize()` for
                the first decoding step and `beam_search_state` returned by
                `step()` for the others.
            **kwargs: Additional keyword arguments, provided by the caller. 
        
        Returns:
            tuple: A tuple( :code:`(beam_search_output, beam_search_state, next_inputs, finished)` ). \
                `beam_search_state` and `next_inputs` have the same structure, \
                shape and data type as the input arguments `states` and `inputs` separately. \
                `beam_search_output` is a namedtuple(including scores, predicted_ids, \
                parent_ids as fields) of tensor variables, where \
                `scores, predicted_ids, parent_ids` all has a tensor value shaped \
                `[batch_size, beam_size]` with data type `float32, int64, int64`. \
                `finished` is a `bool` tensor with shape `[batch_size, beam_size]`.
        """
        # compared to RNN, Transformer has 3D data at every decoding step
        inputs = layers.reshape(inputs, [-1, 1])  # token
        pos = layers.ones_like(inputs) * time  # pos
        cell_states = map_structure(self._merge_batch_beams_with_var_dim,
                                    states.cell_states)

        cell_outputs, next_cell_states = self.cell((inputs, pos), cell_states,
                                                   **kwargs)

        # squeeze to adapt to BeamSearchDecoder which use 2D logits
        cell_outputs = map_structure(
            lambda x: layers.squeeze(x, [1]) if len(x.shape) == 3 else x,
            cell_outputs)
        cell_outputs = map_structure(self._split_batch_beams, cell_outputs)
        next_cell_states = map_structure(self._split_batch_beams_with_var_dim,
                                         next_cell_states)

        beam_search_output, beam_search_state = self._beam_search_step(
            time=time,
            logits=cell_outputs,
            next_cell_states=next_cell_states,
            beam_state=states)
        next_inputs, finished = (beam_search_output.predicted_ids,
                                 beam_search_state.finished)

        return (beam_search_output, beam_search_state, next_inputs, finished)


### Transformer Modules ###
class PrePostProcessLayer(Layer):
    """
    PrePostProcessLayer is used before/after each multi-head attention(MHA) and
    feed-forward network(FFN) sub-layer to perform some specific process on
    inputs/outputs.

    Parameters:
        process_cmd (str): The process applied before/after each MHA and
            FFN sub-layer. It should be a string composed of `d`, `a`, `n`,
            where `d` for dropout, `a` for add residual connection, `n` for
            layer normalization.
        d_model (int): The expected feature size in the input and output.
        dropout_rate (float): The dropout probability if the process includes
            dropout. Default 0.1

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import PrePostProcessLayer

            # input: [batch_size, sequence_length, d_model]
            x = paddle.rand((2, 4, 32))
            process = PrePostProcessLayer('n', 32)
            out = process(x)  # [2, 4, 32]
    """

    def __init__(self, process_cmd, d_model, dropout_rate=0.1):
        super(PrePostProcessLayer, self).__init__()
        self.process_cmd = process_cmd
        self.functors = []
        for cmd in self.process_cmd:
            if cmd == "a":  # add residual connection
                self.functors.append(lambda x, y: x + y if y is not None else x)
            elif cmd == "n":  # add layer normalization
                layer_norm = LayerNorm(
                    normalized_shape=d_model,
                    param_attr=fluid.ParamAttr(
                        initializer=fluid.initializer.Constant(1.)),
                    bias_attr=fluid.ParamAttr(
                        initializer=fluid.initializer.Constant(0.)))

                self.functors.append(
                    self.add_sublayer(
                        "layer_norm_%d" % len(
                            self.sublayers(include_sublayers=False)),
                        layer_norm))
            elif cmd == "d":  # add dropout
                self.functors.append(lambda x: layers.dropout(
                    x, dropout_prob=dropout_rate, is_test=False)
                                     if dropout_rate else x)

    def forward(self, x, residual=None):
        """
        Applies `process_cmd` specified process on `x`.

        Parameters:
            x (Variable): The tensor to be processed. The data type should be float32
                or float64. The shape is `[batch_size, sequence_length, d_model]`.
                
            residual (Variable, optional): Only used if the process includes
                residual connection. It has the same shape and data type as `x`.
                Default None

        Returns:
            Variable: The processed tensor. It has the same shape and data type \
                    as `x`.
        """
        for i, cmd in enumerate(self.process_cmd):
            if cmd == "a":
                x = self.functors[i](x, residual)
            else:
                x = self.functors[i](x)
        return x


class MultiHeadAttention(Layer):
    """
    MultiHead Attention mapps queries and a set of key-value pairs to outputs
    by jointly attending to information from different representation subspaces,
    as what multi-head indicates it performs multiple attention in parallel.

    Please refer to `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_
    for more details.

    Parameters:
        d_key (int): The feature size to transformer queries and keys as in
            multi-head attention. Mostly it equals to `d_model // n_head`.
        d_value (int): The feature size to transformer values as in multi-head
            attention. Mostly it equals to `d_model // n_head`.
        d_model (int): The expected feature size in the input and output.
        n_head (int): The number of heads in multi-head attention(MHA).
        dropout_rate (float, optional): The dropout probability used in MHA to
            drop some attention target. Default 0.1
         
    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import MultiHeadAttention

            # encoder input: [batch_size, sequence_length, d_model]
            query = paddle.rand((2, 4, 128))
            # self attention bias: [batch_size, n_head, src_len, src_len]
            attn_bias = paddle.rand((2, 2, 4, 4))
            multi_head_attn = MultiHeadAttention(64, 64, 128, n_head=2)
            output = multi_head_attn(query, attn_bias=attn_bias)  # [2, 4, 128]
    """

    def __init__(self, d_key, d_value, d_model, n_head, dropout_rate=0.1):

        super(MultiHeadAttention, self).__init__()
        self.n_head = n_head
        self.d_key = d_key
        self.d_value = d_value
        self.d_model = d_model
        self.dropout_rate = dropout_rate

        self.q_fc = Linear(
            input_dim=d_model, output_dim=d_key * n_head, bias_attr=False)
        self.k_fc = Linear(
            input_dim=d_model, output_dim=d_key * n_head, bias_attr=False)
        self.v_fc = Linear(
            input_dim=d_model, output_dim=d_value * n_head, bias_attr=False)
        self.proj_fc = Linear(
            input_dim=d_value * n_head, output_dim=d_model, bias_attr=False)

    def _prepare_qkv(self, queries, keys, values, cache=None):
        """
        Prapares linear projected queries, keys and values for usage of subsequnt
        multiple attention in parallel. If `cache` is not None, using cached
        results to reduce redundant calculations.

        Parameters:
            queries (Variable): The queries for multi-head attention. It is a
                tensor with shape `[batch_size, sequence_length, d_model]`. The
                data type should be float32 or float64.
            keys (Variable, optional): The keys for multi-head attention. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`. The
                data type should be float32 or float64.
            values (Variable, optional): The values for multi-head attention. It
                is a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float32 or float64.
            cache(dict, optional): It is a dict with `k` and `v` as keys, and
                values cache the multi-head attention intermediate results of
                history decoding steps for decoder self attention; Or a dict
                with `static_k` and `statkc_v` as keys, and values stores intermediate
                results of encoder output for decoder-encoder cross attention.
                If it is for decoder self attention, values for `k` and `v` would
                be updated by new tensors concatanating raw tensors with intermediate
                results of current step. It is only used for inference and should
                be None for training. Default None

        Returns:
            tuple: A tuple including linear projected keys and values. These two \
                tensors have shapes `[batch_size, n_head, sequence_length, d_key]` \
                and `[batch_size, n_head, sequence_length, d_value]` separately, \
                and their data types are same as inputs.
        """
        if keys is None:  # self-attention
            keys, values = queries, queries
            static_kv = False
        else:  # cross-attention
            static_kv = True

        q = self.q_fc(queries)
        q = layers.reshape(x=q, shape=[0, 0, self.n_head, self.d_key])
        q = layers.transpose(x=q, perm=[0, 2, 1, 3])

        if cache is not None and static_kv and "static_k" in cache:
            # for encoder-decoder attention in inference and has cached
            k = cache["static_k"]
            v = cache["static_v"]
        else:
            k = self.k_fc(keys)
            v = self.v_fc(values)
            k = layers.reshape(x=k, shape=[0, 0, self.n_head, self.d_key])
            k = layers.transpose(x=k, perm=[0, 2, 1, 3])
            v = layers.reshape(x=v, shape=[0, 0, self.n_head, self.d_value])
            v = layers.transpose(x=v, perm=[0, 2, 1, 3])

        if cache is not None:
            if static_kv and not "static_k" in cache:
                # for encoder-decoder attention in inference and has not cached
                cache["static_k"], cache["static_v"] = k, v
            elif not static_kv:
                # for decoder self-attention in inference
                cache_k, cache_v = cache["k"], cache["v"]
                k = layers.concat([cache_k, k], axis=2)
                v = layers.concat([cache_v, v], axis=2)
                cache["k"], cache["v"] = k, v

        return q, k, v

    def forward(self,
                queries,
                keys=None,
                values=None,
                attn_bias=None,
                cache=None):
        """
        Applies multi-head attention to map queries and a set of key-value pairs
        to outputs.

        Parameters:
            queries (Variable): The queries for multi-head attention. It is a
                tensor with shape `[batch_size, sequence_length, d_model]`. The
                data type should be float32 or float64.
            keys (Variable, optional): The keys for multi-head attention. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`. The
                data type should be float32 or float64.
            values (Variable, optional): The values for multi-head attention. It
                is a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float32 or float64.
            attn_bias (Variable, optional): A tensor used in multi-head attention
                to mask out attention on unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                `[batch_size, n_head, sequence_length, sequence_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. The data type should be float32 or float64. It can
                be None when nothing wanted or needed to be masked out. Default None
            cache(dict, optional): It is a dict with `k` and `v` as keys, and
                values cache the multi-head attention intermediate results of
                history decoding steps for decoder self attention; Or a dict
                with `static_k` and `statkc_v` as keys, and values stores intermediate
                results of encoder output for decoder-encoder cross attention.
                If it is for decoder self attention, values for `k` and `v` would
                be updated by new tensors concatanating raw tensors with intermediate
                results of current step. It is only used for inference and should
                be None for training. Default None

        Returns:
            Variable: The output of multi-head attention. It is a tensor \
                that has the same shape and data type as `queries`.
        """
        # compute q ,k ,v
        q, k, v = self._prepare_qkv(queries, keys, values, cache)

        # scale dot product attention
        product = layers.matmul(
            x=q, y=k, transpose_y=True, alpha=self.d_key**-0.5)
        if attn_bias is not None:
            product += attn_bias
        weights = layers.softmax(product)
        if self.dropout_rate:
            weights = layers.dropout(
                weights, dropout_prob=self.dropout_rate, is_test=False)

        out = layers.matmul(weights, v)

        # combine heads
        out = layers.transpose(out, perm=[0, 2, 1, 3])
        out = layers.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.proj_fc(out)
        return out

    def cal_kv(self, keys, values):
        """
        Applies linear projection on input keys and values, then splits heads
        (reshape and transpose) to get keys and values from different representation
        subspaces for usage of subsequnt multiple attention in parallel.

        Parameters:
            keys (Variable, optional): The keys for multi-head attention. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`. The
                data type should be float32 or float64.
            values (Variable, optional): The values for multi-head attention. It
                is a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float32 or float64.

        Returns:
            tuple: A tuple including linear projected keys and values. These two \
                tensors have shapes `[batch_size, n_head, sequence_length, d_key]` \
                and `[batch_size, n_head, sequence_length, d_value]` separately, \
                and their data types are same as inputs.
        """
        k = self.k_fc(keys)
        v = self.v_fc(values)
        k = layers.reshape(x=k, shape=[0, 0, self.n_head, self.d_key])
        k = layers.transpose(x=k, perm=[0, 2, 1, 3])
        v = layers.reshape(x=v, shape=[0, 0, self.n_head, self.d_value])
        v = layers.transpose(x=v, perm=[0, 2, 1, 3])
        return k, v


class FFN(Layer):
    """
    A fully connected feed-forward network applied to each position separately
    and identically. This consists of two linear transformations with a activation
    and dropout in between.

    Parameters:
        d_inner_hid (int): The hidden size in the feedforward network(FFN).
        d_model (int): The expected feature size in the input and output.
        dropout_rate (float, optional): The dropout probability used after
            activition. Default 0.1
        ffn_fc1_act (str, optional): The activation function in the feedforward
            network. Default relu.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import FFN

            # input: [batch_size, sequence_length, d_model]
            x = paddle.rand((2, 4, 32))
            ffn = FFN(128, 32)
            out = ffn(x)  # [2, 4, 32]
    """

    def __init__(self, d_inner_hid, d_model, dropout_rate=0.1, fc1_act="relu"):
        super(FFN, self).__init__()
        self.dropout_rate = dropout_rate
        self.fc1 = Linear(
            input_dim=d_model, output_dim=d_inner_hid, act=fc1_act)
        self.fc2 = Linear(input_dim=d_inner_hid, output_dim=d_model)

    def forward(self, x):
        """
        Applies a fully connected feed-forward network on each position  of the
        input sequences separately and identically.

        Parameters:
            x (Variable): The input of feed-forward network. It is a tensor
                with shape `[batch_size, sequence_length, d_model]`. The data
                type should be float32 or float64.

        Returns:
            Variable: The output of feed-forward network. It is a tensor that has \
                the same shape and data type as `enc_input`.
        """
        hidden = self.fc1(x)
        if self.dropout_rate:
            hidden = layers.dropout(
                hidden, dropout_prob=self.dropout_rate, is_test=False)
        out = self.fc2(hidden)
        return out


class TransformerEncoderLayer(Layer):
    """
    TransformerEncoderLayer is composed of two sub-layers which are self (multi-head)
    attention and feedforward network. Before and after each sub-layer, pre-process
    and post-precess would be applied on the input and output.

    Parameters:
        n_head (int): The number of heads in multi-head attention(MHA).
        d_key (int): The feature size to transformer queries and keys as in
            multi-head attention. Mostly it equals to `d_model // n_head`.
        d_value (int): The feature size to transformer values as in multi-head
            attention. Mostly it equals to `d_model // n_head`.
        d_model (int): The expected feature size in the input and output.
        d_inner_hid (int): The hidden layer size in the feedforward network(FFN).
        prepostprocess_dropout (float, optional): The dropout probability used
            in pre-process and post-precess of MHA and FFN sub-layer. Default 0.1
        attention_dropout (float, optional): The dropout probability used
            in MHA to drop some attention target. Default 0.1
        relu_dropout (float, optional): The dropout probability used after FFN
            activition. Default 0.1
        preprocess_cmd (str, optional): The process applied before each MHA and
            FFN sub-layer, and it also would be applied on output of the last
            stacked layer. It should be a string composed of `d`, `a`, `n`,
            where `d` for dropout, `a` for add residual connection, `n` for
            layer normalization. Default `n`.
        postprocess_cmd (str, optional): The process applied after each MHA and
            FFN sub-layer. Same as `preprocess_cmd`. It should be a string
            composed of `d`, `a`, `n`, where `d` for dropout, `a` for add
            residual connection, `n` for layer normalization. Default `da`.
        ffn_fc1_act (str, optional): The activation function in the feedforward
            network. Default relu.
         
    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import TransformerEncoderLayer

            # encoder input: [batch_size, src_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # self attention bias: [batch_size, n_head, src_len, src_len]
            attn_bias = paddle.rand((2, 2, 4, 4))
            encoder_layer = TransformerEncoderLayer(2, 64, 64, 128, 512)
            enc_output = encoder_layer(enc_input, attn_bias)  # [2, 4, 128]
    """

    def __init__(self,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout=0.1,
                 attention_dropout=0.1,
                 relu_dropout=0.1,
                 preprocess_cmd="n",
                 postprocess_cmd="da",
                 ffn_fc1_act="relu"):

        super(TransformerEncoderLayer, self).__init__()

        self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
                                            attention_dropout)
        self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

        self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.ffn = FFN(d_inner_hid, d_model, relu_dropout, fc1_act=ffn_fc1_act)
        self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

    def forward(self, enc_input, attn_bias=None):
        """
        Applies a Transformer encoder layer on the input.

        Parameters:
            enc_input (Variable): The input of Transformer encoder layer. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float32 or float64.
            attn_bias(Variable, optional): A tensor used in encoder self attention
                to mask out attention on unwanted positions, usually the paddings. It
                is a tensor with shape `[batch_size, n_head, sequence_length, sequence_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. The data type should be float32 or float64. It can
                be None when nothing wanted or needed to be masked out. Default None

        Returns:
            Variable: The output of Transformer encoder layer. It is a tensor that \
                has the same shape and data type as `enc_input`.
        """
        attn_output = self.self_attn(
            self.preprocesser1(enc_input), None, None, attn_bias)
        attn_output = self.postprocesser1(attn_output, enc_input)

        ffn_output = self.ffn(self.preprocesser2(attn_output))
        ffn_output = self.postprocesser2(ffn_output, attn_output)
        return ffn_output


class TransformerEncoder(Layer):
    """
    TransformerEncoder is a stack of N encoder layers.

    Parameters:
        n_layer (int): The number of encoder layers to be stacked.
        n_head (int): The number of heads in multi-head attention(MHA).
        d_key (int): The feature size to transformer queries and keys as in
            multi-head attention. Mostly it equals to `d_model // n_head`.
        d_value (int): The feature size to transformer values as in multi-head
            attention. Mostly it equals to `d_model // n_head`.
        d_model (int): The expected feature size in the input and output.
        d_inner_hid (int): The hidden layer size in the feedforward network(FFN).
        prepostprocess_dropout (float, optional): The dropout probability used
            in pre-process and post-precess of MHA and FFN sub-layer. Default 0.1
        attention_dropout (float, optional): The dropout probability used
            in MHA to drop some attention target. Default 0.1
        relu_dropout (float, optional): The dropout probability used after FFN
            activition. Default 0.1
        preprocess_cmd (str, optional): The process applied before each MHA and
            FFN sub-layer, and it also would be applied on output of the last
            stacked layer. It should be a string composed of `d`, `a`, `n`,
            where `d` for dropout, `a` for add residual connection, `n` for
            layer normalization. Default `n`.
        postprocess_cmd (str, optional): The process applied after each MHA and
            FFN sub-layer. Same as `preprocess_cmd`. It should be a string
            composed of `d`, `a`, `n`, where `d` for dropout, `a` for add
            residual connection, `n` for layer normalization. Default `da`.
        ffn_fc1_act (str, optional): The activation function in the feedforward
            network. Default relu.
         
    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import TransformerEncoder

            # encoder input: [batch_size, src_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # self attention bias: [batch_size, n_head, src_len, src_len]
            attn_bias = paddle.rand((2, 2, 4, 4))
            encoder = TransformerEncoder(2, 2, 64, 64, 128, 512)
            enc_output = encoder(enc_input, attn_bias)  # [2, 4, 128]
    """

    def __init__(self,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout=0.1,
                 attention_dropout=0.1,
                 relu_dropout=0.1,
                 preprocess_cmd="n",
                 postprocess_cmd="da",
                 ffn_fc1_act="relu"):

        super(TransformerEncoder, self).__init__()

        self.encoder_layers = list()
        for i in range(n_layer):
            self.encoder_layers.append(
                self.add_sublayer(
                    "layer_%d" % i,
                    TransformerEncoderLayer(
                        n_head,
                        d_key,
                        d_value,
                        d_model,
                        d_inner_hid,
                        prepostprocess_dropout,
                        attention_dropout,
                        relu_dropout,
                        preprocess_cmd,
                        postprocess_cmd,
                        ffn_fc1_act=ffn_fc1_act)))
        self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
                                             prepostprocess_dropout)

    def forward(self, enc_input, attn_bias=None):
        """
        Applies a stack of N Transformer encoder layers on input sequences.

        Parameters:
            enc_input (Variable): The input of Transformer encoder. It is a tensor
                with shape `[batch_size, sequence_length, d_model]`. The data
                type should be float32 or float64.
            attn_bias(Variable, optional): A tensor used in encoder self attention
                to mask out attention on unwanted positions, usually the paddings. It
                is a tensor with shape `[batch_size, n_head, sequence_length, sequence_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. The data type should be float32 or float64. It can
                be None when nothing wanted or needed to be masked out. Default None

        Returns:
            Variable: The output of Transformer encoder. It is a tensor that has \
                the same shape and data type as `enc_input`.
        """
        for encoder_layer in self.encoder_layers:
            enc_output = encoder_layer(enc_input, attn_bias)
            enc_input = enc_output

        return self.processer(enc_output)


class TransformerDecoderLayer(Layer):
    """
    TransformerDecoderLayer is composed of three sub-layers which are decoder
    self (multi-head) attention, decoder-encoder cross attention and feedforward
    network. Before and after each sub-layer, pre-process and post-precess would
    be applied on the input and output.

    Parameters:
        n_head (int): The number of heads in multi-head attention(MHA).
        d_key (int): The feature size to transformer queries and keys as in
            multi-head attention. Mostly it equals to `d_model // n_head`.
        d_value (int): The feature size to transformer values as in multi-head
            attention. Mostly it equals to `d_model // n_head`.
        d_model (int): The expected feature size in the input and output.
        d_inner_hid (int): The hidden layer size in the feedforward network(FFN).
        prepostprocess_dropout (float, optional): The dropout probability used
            in pre-process and post-precess of MHA and FFN sub-layer. Default 0.1
        attention_dropout (float, optional): The dropout probability used
            in MHA to drop some attention target. Default 0.1
        relu_dropout (float, optional): The dropout probability used after FFN
            activition. Default 0.1
        preprocess_cmd (str, optional): The process applied before each MHA and
            FFN sub-layer, and it also would be applied on output of the last
            stacked layer. It should be a string composed of `d`, `a`, `n`,
            where `d` for dropout, `a` for add residual connection, `n` for
            layer normalization. Default `n`.
        postprocess_cmd (str, optional): The process applied after each MHA and
            FFN sub-layer. Same as `preprocess_cmd`. It should be a string
            composed of `d`, `a`, `n`, where `d` for dropout, `a` for add
            residual connection, `n` for layer normalization. Default `da`.
        ffn_fc1_act (str, optional): The activation function in the feedforward
            network. Default relu.
         
    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import TransformerDecoderLayer

            # decoder input: [batch_size, trg_len, d_model]
            dec_input = paddle.rand((2, 4, 128))
            # encoder output: [batch_size, src_len, d_model]
            enc_output = paddle.rand((2, 6, 128))
            # self attention bias: [batch_size, n_head, trg_len, trg_len]
            self_attn_bias = paddle.rand((2, 2, 4, 4))
            # cross attention bias: [batch_size, n_head, trg_len, src_len]
            cross_attn_bias = paddle.rand((2, 2, 4, 6))
            decoder_layer = TransformerDecoderLayer(2, 64, 64, 128, 512)
            output = decoder_layer(dec_input,
                                   enc_output,
                                   self_attn_bias,
                                   cross_attn_bias)  # [2, 4, 128]
    """

    def __init__(self,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout=0.1,
                 attention_dropout=0.1,
                 relu_dropout=0.1,
                 preprocess_cmd="n",
                 postprocess_cmd="da",
                 ffn_fc1_act="relu"):
        super(TransformerDecoderLayer, self).__init__()

        self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
                                            attention_dropout)
        self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

        self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.cross_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
                                             attention_dropout)
        self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

        self.preprocesser3 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.ffn = FFN(d_inner_hid, d_model, relu_dropout, fc1_act=ffn_fc1_act)
        self.postprocesser3 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

    def forward(self,
                dec_input,
                enc_output,
                self_attn_bias=None,
                cross_attn_bias=None,
                cache=None):
        """
        Applies a Transformer decoder layer on the input.

        Parameters:
            dec_input (Variable): The input of Transformer decoder. It is a tensor
                with shape `[batch_size, target_length, d_model]`. The data type
                should be float32 or float64.
            enc_output (Variable): The output of Transformer encoder. It is a tensor
                with shape `[batch_size, source_length, d_model]`. The data type
                should be float32 or float64.
            self_attn_bias (Variable, optional): A tensor used in decoder self attention
                to mask out attention on unwanted positions, usually the subsequent positions.
                It is a tensor with shape `[batch_size, n_head, target_length, target_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. The data type should be float32 or float64. It can
                be None when nothing wanted or needed to be masked out. Default None
            cross_attn_bias (Variable, optional): A tensor used in decoder-encoder cross
                attention to mask out attention on unwanted positions, usually the paddings.
                It is a tensor with shape `[batch_size, n_head, target_length, target_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. The data type should be float32 or float64. It can
                be None when nothing wanted or needed to be masked out. Default None
            caches(dict, optional): It caches the multi-head attention intermediate
                results of history decoding steps and encoder output. It is a dict
                has `k`, `v`, `static_k`, `statkc_v` as keys and values are cached
                results. It is only used for inference and should be None for
                training. Default None

        Returns:
            Variable: The output of Transformer decoder layer. It is a tensor \
                that has the same shape and data type as `dec_input`.
        """
        self_attn_output = self.self_attn(
            self.preprocesser1(dec_input), None, None, self_attn_bias, cache)
        self_attn_output = self.postprocesser1(self_attn_output, dec_input)

        cross_attn_output = self.cross_attn(
            self.preprocesser2(self_attn_output), enc_output, enc_output,
            cross_attn_bias, cache)
        cross_attn_output = self.postprocesser2(cross_attn_output,
                                                self_attn_output)

        ffn_output = self.ffn(self.preprocesser3(cross_attn_output))
        ffn_output = self.postprocesser3(ffn_output, cross_attn_output)

        return ffn_output


class TransformerDecoder(Layer):
    """
    TransformerDecoder is a stack of N decoder layers.

    Parameters:
        n_layer (int): The number of encoder layers to be stacked.
        n_head (int): The number of heads in multi-head attention(MHA).
        d_key (int): The feature size to transformer queries and keys as in
            multi-head attention. Mostly it equals to `d_model // n_head`.
        d_value (int): The feature size to transformer values as in multi-head
            attention. Mostly it equals to `d_model // n_head`.
        d_model (int): The expected feature size in the input and output.
        d_inner_hid (int): The hidden layer size in the feedforward network(FFN).
        prepostprocess_dropout (float, optional): The dropout probability used
            in pre-process and post-precess of MHA and FFN sub-layer. Default 0.1
        attention_dropout (float, optional): The dropout probability used
            in MHA to drop some attention target. Default 0.1
        relu_dropout (float, optional): The dropout probability used after FFN
            activition. Default 0.1
        preprocess_cmd (str, optional): The process applied before each MHA and
            FFN sub-layer, and it also would be applied on output of the last
            stacked layer. It should be a string composed of `d`, `a`, `n`,
            where `d` for dropout, `a` for add residual connection, `n` for
            layer normalization. Default `n`.
        postprocess_cmd (str, optional): The process applied after each MHA and
            FFN sub-layer. Same as `preprocess_cmd`. It should be a string
            composed of `d`, `a`, `n`, where `d` for dropout, `a` for add
            residual connection, `n` for layer normalization. Default `da`.
        ffn_fc1_act (str, optional): The activation function in the feedforward
            network. Default relu.
         
    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import TransformerDecoder

            # decoder input: [batch_size, trg_len, d_model]
            dec_input = paddle.rand((2, 4, 128))
            # encoder output: [batch_size, src_len, d_model]
            enc_output = paddle.rand((2, 6, 128))
            # self attention bias: [batch_size, n_head, trg_len, trg_len]
            self_attn_bias = paddle.rand((2, 2, 4, 4))
            # cross attention bias: [batch_size, n_head, trg_len, src_len]
            cross_attn_bias = paddle.rand((2, 2, 4, 6))
            decoder = TransformerDecoder(2, 2, 64, 64, 128, 512)
            dec_output = decoder(dec_input,
                                 enc_output,
                                 self_attn_bias,
                                 cross_attn_bias)  # [2, 4, 128]
    """

    def __init__(self,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout=0.1,
                 attention_dropout=0.1,
                 relu_dropout=0.1,
                 preprocess_cmd="n",
                 postprocess_cmd="da",
                 ffn_fc1_act="relu"):
        super(TransformerDecoder, self).__init__()

        self.n_layer = n_layer
        self.n_head = n_head
        self.d_key = d_key
        self.d_value = d_value

        self.decoder_layers = list()
        for i in range(n_layer):
            self.decoder_layers.append(
                self.add_sublayer(
                    "layer_%d" % i,
                    TransformerDecoderLayer(n_head, d_key, d_value, d_model,
                                            d_inner_hid, prepostprocess_dropout,
                                            attention_dropout, relu_dropout,
                                            preprocess_cmd, postprocess_cmd)))
        self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
                                             prepostprocess_dropout)

    def forward(self,
                dec_input,
                enc_output,
                self_attn_bias=None,
                cross_attn_bias=None,
                caches=None):
        """
        Applies a stack of N Transformer decoder layers on inputs.

        Parameters:
            dec_input (Variable): The input of Transformer decoder. It is a tensor
                with shape `[batch_size, target_length, d_model]`. The data type
                should be float32 or float64.
            enc_output (Variable): The output of Transformer encoder. It is a tensor
                with shape `[batch_size, source_length, d_model]`. The data type
                should be float32 or float64.
            self_attn_bias (Variable, optional): A tensor used in decoder self attention
                to mask out attention on unwanted positions, usually the subsequent positions.
                It is a tensor with shape `[batch_size, n_head, target_length, target_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. The data type should be float32 or float64. It can
                be None when nothing wanted or needed to be masked out. Default None
            cross_attn_bias (Variable, optional): A tensor used in decoder-encoder cross
                attention to mask out attention on unwanted positions, usually the paddings.
                It is a tensor with shape `[batch_size, n_head, target_length, target_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. The data type should be float32 or float64. It can
                be None when nothing wanted or needed to be masked out. Default None
            caches(list, optional): It caches the multi-head attention intermediate results
                of history decoding steps and encoder output. It is a list of dict
                where the length of list is decoder layer number, and each dict
                has `k`, `v`, `static_k`, `statkc_v` as keys and values are cached
                results. It is only used for inference and should be None for
                training. Default None

        Returns:
            Variable: The output of Transformer decoder. It is a tensor that has \
                the same shape and data type as `dec_input`.
        """
        for i, decoder_layer in enumerate(self.decoder_layers):
            dec_output = decoder_layer(dec_input, enc_output, self_attn_bias,
                                       cross_attn_bias, caches[i]
                                       if caches else None)
            dec_input = dec_output

        return self.processer(dec_output)

    def prepare_static_cache(self, enc_output):
        """
        Generate a list of dict where the length of list is decoder layer number.
        Each dict has `static_k`, `statkc_v` as keys, and values are projected
        results of encoder output to be used as keys and values in decoder-encoder
        cross (multi-head) attention. Used in inference.

        Parameters:
            enc_output (Variable): The output of Transformer encoder. It is a tensor
                with shape `[batch_size, source_length, d_model]`. The data type
                should be float32 or float64.

        Returns:
            list: A list of dict. Each dict has `static_k`, `statkc_v` as keys, \
                and values are projected results of encoder output to be used as \
                keys and values in decoder-encoder cross (multi-head) attention.
        """
        return [
            dict(
                zip(("static_k", "static_v"),
                    decoder_layer.cross_attn.cal_kv(enc_output, enc_output)))
            for decoder_layer in self.decoder_layers
        ]

    def prepare_incremental_cache(self, enc_output):
        """
        Generate a list of dict where the length of list is decoder layer number.
        Each dict has `k`, `v` as keys, and values are empty tensors with shape
        `[batch_size, n_head, 0, d_key]` and `[batch_size, n_head, 0, d_value]`,
        representing the decoder self (multi-head) attention intermediate results,
        and 0 is the initial length which would increase as inference decoding
        continued. Used in inference.

        Parameters:
            enc_output (Variable): The output of Transformer encoder. It is a tensor
                with shape `[batch_size, source_length, d_model]`. The data type
                should be float32 or float64. Actually, it is used to provide batch
                size for Transformer initial states(caches), thus any tensor has
                wanted batch size can be used here.

        Returns:
            list: A list of dict. Each dict has `k`, `v` as keys, and values are \
                empty tensors representing intermediate results of history decoding \
                steps in decoder self (multi-head) attention at time step 0.
        """
        return [{
            "k": layers.fill_constant_batch_size_like(
                input=enc_output,
                shape=[-1, self.n_head, 0, self.d_key],
                dtype=enc_output.dtype,
                value=0),
            "v": layers.fill_constant_batch_size_like(
                input=enc_output,
                shape=[-1, self.n_head, 0, self.d_value],
                dtype=enc_output.dtype,
                value=0),
        } for i in range(self.n_layer)]


class LinearChainCRF(Layer):
    """
    Computes the negtive log-likelihood of tag sequences in a linear chain CRF. 
    Using terminologies of undirected probabilistic graph model, it calculates
    probability using unary potentials (for emission) and binary potentials 
    (for transition). 

    This layer creates a learnable parameter shaped `[size + 2, size]` (`size`
    is for the number of tags), where:
    
    1. the first row is for starting weights, denoted as $a$ here
    
    2. the second row is for ending weights, denoted as $b$ here.
    
    3. the remaining rows is a matrix for transition weights. 
    
    Denote input tensor of unary potentials(emission) as $x$ , then the probability
    of a tag sequence $s$ of length $L$ is defined as:

    $$P(s) = (1/Z) \exp(a_{s_1} + b_{s_L}
                    + \sum_{l=1}^L x_{s_l}
                    + \sum_{l=2}^L w_{s_{l-1},s_l})$$
    
    where $Z$ is a normalization value so that the sum of $P(s)$ over
    all possible sequences is 1, and $x$ is the emission feature weight
    to the linear chain CRF.

    This operator implements the Forward-Backward algorithm for the linear chain
    CRF. Please refer to http://www.cs.columbia.edu/~mcollins/fb.pdf and
    http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for details.

    NOTE:

    1. The feature function for a CRF is made up of the emission features and the
    transition features. The emission feature weights are NOT computed in
    this operator. They MUST be computed first before this operator is called.

    2. Because this operator performs global normalization over all possible
    sequences internally, it expects UNSCALED emission feature weights.
    Please do not call this op with the emission feature being output of any
    nonlinear activation.

    3. The 2nd dimension of input(emission) MUST be equal to the tag number.

    Parameters:
        size (int): The number of tags.
        param_attr (ParamAttr, optional): The attribute of the learnable parameter for
            transition. Default: None
        dtype (str, optional): Data type, it can be 'float32' or 'float64'.
            Default: `float32`

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import LinearChainCRF

            # emission: [batch_size, sequence_length, num_tags]
            emission = paddle.rand((2, 8, 5))
            # label: [batch_size, sequence_length, num_tags]
            # dummy label just for example usage
            label = paddle.ones((2, 8), dtype='int64')  
            length = fluid.layers.assign(np.array([6, 8]).astype('int64'))
            crf = LinearChainCRF(size=5)
            cost = crf(emission, label, length)  # [2, 1]
    """

    def __init__(self, size, param_attr=None, dtype='float32'):
        super(LinearChainCRF, self).__init__()
        self._param_attr = param_attr
        self._dtype = dtype
        self._size = size
        self._transition = self.create_parameter(
            attr=self._param_attr,
            shape=[self._size + 2, self._size],
            dtype=self._dtype)

    @property
    def weight(self):
        """
        getter for transition matrix parameter

        Returns:
            Parameter: The learnable transition parameter shaped `[size + 2, size]` \
                (`size` is for the number of tags). The data type should be float32 \
                or float64.
        """
        return self._transition

    @weight.setter
    def weight(self, value):
        """
        setter for transition matrix parameter

        Parameters:
            value (Parameter): The learnable transition parameter shaped `[size + 2, size]` \
                (`size` is for the number of tags). The data type should be float32 \
                or float64.
        """
        self._transition = value

    def forward(self, input, label, length):
        """
        Computes the log-likelihood of tag sequences in a linear chain CRF.

        Parameters:
            input (Variable): The input of unary potentials(emission). It is a
                tensor with shape `[batch_size, sequence_length, num_tags]`.
                The data type should be float32 or float64.
            label (Variable): The golden sequence tags. It is a tensor
                with shape `[batch_size, sequence_length]`. The data type
                should be int64.
            length (Variable): A tensor with shape `[batch_size]`. It stores real
                length of each sequence for correctness.

        Returns:
            Variable: The negtive log-likelihood of tag sequences. It is a tensor \
                with shape `[batch_size, 1]` and has float32 or float64 data type.
        """
        alpha = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        emission_exps = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        transition_exps = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        log_likelihood = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        this_inputs = {
            "Emission": [input],
            "Transition": self._transition,
            "Label": [label]
        }
        if length is not None:
            this_inputs['Length'] = [length]
        self._helper.append_op(
            type='linear_chain_crf',
            inputs=this_inputs,
            outputs={
                "Alpha": [alpha],
                "EmissionExps": [emission_exps],
                "TransitionExps": transition_exps,
                "LogLikelihood": log_likelihood
            })
        return log_likelihood


class CRFDecoding(Layer):
    """
    CRFDecoding reads the emission feature weights and the transition
    feature weights learned by the `LinearChainCRF` and performs decoding. 
    It implements the Viterbi algorithm which is a dynamic programming algorithm 
    for finding the most likely sequence of hidden states, called the Viterbi path, 
    that results in a sequence of observed tags.

    The output of this layer changes according to whether `label` is given:

    1. `label` is given:

    This happens in training. This operator is used to co-work with the chunk_eval
    operator. When `label` is given, it returns tensor with the same shape as 
    `label` whose values are fixed to be 0, indicating an incorrect prediction,
    or 1 indicating a tag is correctly predicted. Such an output is the input to
    chunk_eval operator.

    2. `label` is not given:

    This is the standard decoding process and get the highest scoring sequence
    of tags.

    Parameters:
        size (int): The number of tags.
        param_attr (ParamAttr, optional): The attribute of the learnable parameter for
            transition. Default: None
        dtype (str, optional): Data type, it can be 'float32' or 'float64'.
            Default: `float32`

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import CRFDecoding

            # emission: [batch_size, sequence_length, num_tags]
            emission = paddle.rand((2, 8, 5))
            length = fluid.layers.assign(np.array([6, 8]).astype('int64'))
            crf_decoding = CRFDecoding(size=5)
            cost = crf_decoding(emission, length)  # [2, 8]
    """

    def __init__(self, size, param_attr=None, dtype='float32'):
        super(CRFDecoding, self).__init__()
        self._dtype = dtype
        self._size = size
        self._param_attr = param_attr
        self._transition = self.create_parameter(
            attr=self._param_attr,
            shape=[self._size + 2, self._size],
            dtype=self._dtype)

    @property
    def weight(self):
        """
        getter for transition matrix parameter

        Returns:
            Parameter: The learnable transition parameter shaped `[size + 2, size]` \
                (`size` is for the number of tags). The data type should be float32 \
                or float64.
        """
        return self._transition

    @weight.setter
    def weight(self, value):
        """
        setter for transition matrix parameter

        Parameters:
            value (Parameter): The learnable transition parameter shaped `[size + 2, size]` \
                (`size` is for the number of tags). The data type should be float32 \
                or float64.
        """
        self._transition = value

    def forward(self, input, length, label=None):
        """
        Performs sequence tagging prediction.

        Parameters:
            input (Variable): The input of unary potentials(emission). It is a
                tensor with shape `[batch_size, sequence_length, num_tags]`.
                The data type should be float32 or float64.
            length (Variable): A tensor with shape `[batch_size]`.
                It stores real length of each sequence for correctness.
            label (Variable, optional): The golden sequence tags. It is a tensor
                with shape `[batch_size, sequence_length]`. The data type
                should be int64. Default None.

        Returns:
            Variable: A tensor with shape `[batch_size, sequence_length]` and \
                int64 data type. If `label` is None, the tensor has binary values \
                indicating a correct or incorrect prediction. Otherwise its values \
                range from 0 to maximum tag number - 1, each element indicates \
                an index of a predicted tag.
        """

        viterbi_path = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        this_inputs = {
            "Emission": [input],
            "Transition": self._transition,
            "Label": label
        }
        if length is not None:
            this_inputs['Length'] = [length]
        self._helper.append_op(
            type='crf_decoding',
            inputs=this_inputs,
            outputs={"ViterbiPath": [viterbi_path]})
        return viterbi_path


class _GRUEncoder(Layer):
    """
    A multi-layer bidirectional GRU encoder used by SequenceTagging.
    """

    def __init__(self,
                 input_dim,
                 grnn_hidden_dim,
                 init_bound,
                 num_layers=1,
                 is_bidirection=False):
        super(_GRUEncoder, self).__init__()
        self.num_layers = num_layers
        self.is_bidirection = is_bidirection
        self.gru_list = []
        self.gru_r_list = []
        for i in range(num_layers):
            self.basic_gru_cell = BasicGRUCell(
                input_size=input_dim if i == 0 else input_dim * 2,
                hidden_size=grnn_hidden_dim,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-init_bound, high=init_bound),
                    regularizer=fluid.regularizer.L2DecayRegularizer(
                        regularization_coeff=1e-4)))
            self.gru_list.append(
                self.add_sublayer(
                    "gru_%d" % i,
                    RNN(self.basic_gru_cell, is_reverse=False,
                        time_major=False)))
        if self.is_bidirection:
            for i in range(num_layers):
                self.basic_gru_cell_r = BasicGRUCell(
                    input_size=input_dim if i == 0 else input_dim * 2,
                    hidden_size=grnn_hidden_dim,
                    param_attr=fluid.ParamAttr(
                        initializer=fluid.initializer.UniformInitializer(
                            low=-init_bound, high=init_bound),
                        regularizer=fluid.regularizer.L2DecayRegularizer(
                            regularization_coeff=1e-4)))
                self.gru_r_list.append(
                    self.add_sublayer(
                        "gru_r_%d" % i,
                        RNN(self.basic_gru_cell_r,
                            is_reverse=True,
                            time_major=False)))

    def forward(self, input_feature, h0=None):
        for i in range(self.num_layers):
            pre_gru, pre_state = self.gru_list[i](input_feature)
            if self.is_bidirection:
                gru_r, r_state = self.gru_r_list[i](input_feature)
                out = fluid.layers.concat(input=[pre_gru, gru_r], axis=-1)
            else:
                out = pre_gru
            input_feature = out
        return out


class SequenceTagging(Layer):
    """
    Sequence tagging model using multi-layer bidirectional GRU as backbone and
    linear chain CRF as output layer.

    Parameters:
        vocab_size (int): The size of vocabulary.
        num_labels (int): The number of labels.
        word_emb_dim (int, optional): The embedding size. Defalut 128
        grnn_hidden_dim (int, optional): The hidden size of GRU. Defalut 128
        emb_learning_rate (int, optional): The partial learning rate for embedding.
            The actual learning rate for embedding would multiply it with the global
            learning rate. Default 0.1
        crf_learning_rate (int, optional): The partial learning rate for crf. The
            actual learning rate for embedding would multiply it with the global
            learning rate. Default 0.1
        bigru_num (int, optional): The number of bidirectional GRU layers.
            Default 2
        init_bound (float, optional): The range for uniform initializer would
            be `(-init_bound, init_bound)`. It would be used for all parameters
            except CRF transition matrix. Default 0.1

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            from paddle.incubate.hapi.text import SequenceTagging

            # word: [batch_size, sequence_length]
            # dummy input just for example
            word = paddle.ones((2, 8), dtype='int64')
            length = fluid.layers.assign(np.array([6, 8]).astype('int64'))
            seq_tagger = SequenceTagging(vocab_size=100, num_labels=5)
            outputs = seq_tagger(word, length)
    """

    def __init__(self,
                 vocab_size,
                 num_labels,
                 word_emb_dim=128,
                 grnn_hidden_dim=128,
                 emb_learning_rate=0.1,
                 crf_learning_rate=0.1,
                 bigru_num=2,
                 init_bound=0.1):
        super(SequenceTagging, self).__init__()
        self.word_emb_dim = word_emb_dim
        self.vocab_size = vocab_size
        self.num_labels = num_labels
        self.grnn_hidden_dim = grnn_hidden_dim
        self.emb_lr = emb_learning_rate
        self.crf_lr = crf_learning_rate
        self.bigru_num = bigru_num
        self.init_bound = 0.1

        self.word_embedding = Embedding(
            size=[self.vocab_size, self.word_emb_dim],
            dtype='float32',
            param_attr=fluid.ParamAttr(
                learning_rate=self.emb_lr,
                name="word_emb",
                initializer=fluid.initializer.Uniform(
                    low=-self.init_bound, high=self.init_bound)))

        self.gru_encoder = _GRUEncoder(
            input_dim=self.grnn_hidden_dim,
            grnn_hidden_dim=self.grnn_hidden_dim,
            init_bound=self.init_bound,
            num_layers=self.bigru_num,
            is_bidirection=True)

        self.fc = Linear(
            input_dim=self.grnn_hidden_dim * 2,
            output_dim=self.num_labels,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-self.init_bound, high=self.init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))

        self.linear_chain_crf = LinearChainCRF(
            param_attr=fluid.ParamAttr(
                name='linear_chain_crfw', learning_rate=self.crf_lr),
            size=self.num_labels)

        self.crf_decoding = CRFDecoding(
            param_attr=fluid.ParamAttr(
                name='crfw', learning_rate=self.crf_lr),
            size=self.num_labels)

    def forward(self, word, lengths, target=None):
        """
        Performs sequence tagging. If `target` is None, it is for training and
        loss would be returned, otherwise it is for inference and returns the
        predicted tags.

        Parameters:
            word (Variable): The input sequences to be labeled. It is a tensor
                with shape `[batch_size, sequence_length]`. The data type should
                be int64.
            lengths (Variable): A tensor with shape `[batch_size]`. It stores real
                length of each sequence.
            target (Variable, optional): The golden sequence tags. It is a tensor
                with shape `[batch_size, sequence_length]`. The data type
                should be int64. It could be None for inference. Default None.

        Returns:
            tuple: A tuple( :code:`(crf_decode, avg_cost, lengths)` ) If input \
                argument `target` is provided, including the most likely sequence \
                tags, the averaged CRF cost and the sequence lengths, the shapes \
                are `[batch_size, sequence_length]`, `[1]` and `[batch_size]`, \
                and the data types are int64, float32 and int64. Otherwise A \
                tuple( :code:`(crf_decode, lengths)` ) for inference.
        """
        word_embed = self.word_embedding(word)
        input_feature = word_embed

        bigru_output = self.gru_encoder(input_feature)
        emission = self.fc(bigru_output)

        if target is not None:
            crf_cost = self.linear_chain_crf(
                input=emission, label=target, length=lengths)
            avg_cost = fluid.layers.mean(x=crf_cost)
            self.crf_decoding.weight = self.linear_chain_crf.weight
            crf_decode = self.crf_decoding(input=emission, length=lengths)
            return crf_decode, avg_cost, lengths
        else:
            self.linear_chain_crf.weight = self.crf_decoding.weight
            crf_decode = self.crf_decoding(input=emission, length=lengths)
            return crf_decode, lengths