resnet.py 6.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8
#!/usr/bin/env python
from paddle.trainer_config_helpers import *

height = 224
width = 224
num_class = 1000
batch_size = get_config_arg('batch_size', int, 64)
layer_num = get_config_arg("layer_num", int, 50)
T
tensor-tang 已提交
9 10 11 12 13 14 15 16 17
is_infer = get_config_arg("is_infer", bool, False)

args = {
    'height': height,
    'width': width,
    'color': True,
    'num_class': num_class,
    'is_infer': is_infer
}
T
tensor-tang 已提交
18
define_py_data_sources2(
19 20 21 22 23
    "train.list" if not is_infer else None,
    "test.list" if is_infer else None,
    module="provider",
    obj="process",
    args=args)
T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

settings(
    batch_size=batch_size,
    learning_rate=0.01 / batch_size,
    learning_method=MomentumOptimizer(0.9),
    regularization=L2Regularization(0.0005 * batch_size))


#######################Network Configuration #############
def conv_bn_layer(name,
                  input,
                  filter_size,
                  num_filters,
                  stride,
                  padding,
                  channels=None,
                  active_type=ReluActivation()):
    """
    A wrapper for conv layer with batch normalization layers.
    Note:
    conv layer has no activation.
    """

    tmp = img_conv_layer(
        name=name + "_conv",
        input=input,
        filter_size=filter_size,
        num_channels=channels,
        num_filters=num_filters,
        stride=stride,
        padding=padding,
        act=LinearActivation(),
        bias_attr=False)
    return batch_norm_layer(
T
tensor-tang 已提交
58 59 60 61
        name=name + "_bn",
        input=tmp,
        act=active_type,
        use_global_stats=is_infer)
T
tensor-tang 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222


def bottleneck_block(name, input, num_filters1, num_filters2):
    """
    A wrapper for bottlenect building block in ResNet.
    Last conv_bn_layer has no activation.
    Addto layer has activation of relu.
    """
    last_name = conv_bn_layer(
        name=name + '_branch2a',
        input=input,
        filter_size=1,
        num_filters=num_filters1,
        stride=1,
        padding=0)
    last_name = conv_bn_layer(
        name=name + '_branch2b',
        input=last_name,
        filter_size=3,
        num_filters=num_filters1,
        stride=1,
        padding=1)
    last_name = conv_bn_layer(
        name=name + '_branch2c',
        input=last_name,
        filter_size=1,
        num_filters=num_filters2,
        stride=1,
        padding=0,
        active_type=LinearActivation())

    return addto_layer(
        name=name + "_addto", input=[input, last_name], act=ReluActivation())


def mid_projection(name, input, num_filters1, num_filters2, stride=2):
    """
    A wrapper for middile projection in ResNet.
    projection shortcuts are used for increasing dimensions,
    and other shortcuts are identity
    branch1: projection shortcuts are used for increasing
    dimensions, has no activation.
    branch2x: bottleneck building block, shortcuts are identity.
    """
    # stride = 2
    branch1 = conv_bn_layer(
        name=name + '_branch1',
        input=input,
        filter_size=1,
        num_filters=num_filters2,
        stride=stride,
        padding=0,
        active_type=LinearActivation())

    last_name = conv_bn_layer(
        name=name + '_branch2a',
        input=input,
        filter_size=1,
        num_filters=num_filters1,
        stride=stride,
        padding=0)
    last_name = conv_bn_layer(
        name=name + '_branch2b',
        input=last_name,
        filter_size=3,
        num_filters=num_filters1,
        stride=1,
        padding=1)

    last_name = conv_bn_layer(
        name=name + '_branch2c',
        input=last_name,
        filter_size=1,
        num_filters=num_filters2,
        stride=1,
        padding=0,
        active_type=LinearActivation())

    return addto_layer(
        name=name + "_addto", input=[branch1, last_name], act=ReluActivation())


img = data_layer(name='image', size=height * width * 3)


def deep_res_net(res2_num=3, res3_num=4, res4_num=6, res5_num=3):
    """
    A wrapper for 50,101,152 layers of ResNet.
    res2_num: number of blocks stacked in conv2_x
    res3_num: number of blocks stacked in conv3_x
    res4_num: number of blocks stacked in conv4_x
    res5_num: number of blocks stacked in conv5_x
    """
    # For ImageNet
    # conv1: 112x112
    tmp = conv_bn_layer(
        "conv1",
        input=img,
        filter_size=7,
        channels=3,
        num_filters=64,
        stride=2,
        padding=3)
    tmp = img_pool_layer(name="pool1", input=tmp, pool_size=3, stride=2)

    # conv2_x: 56x56
    tmp = mid_projection(
        name="res2_1", input=tmp, num_filters1=64, num_filters2=256, stride=1)
    for i in xrange(2, res2_num + 1, 1):
        tmp = bottleneck_block(
            name="res2_" + str(i), input=tmp, num_filters1=64, num_filters2=256)

    # conv3_x: 28x28
    tmp = mid_projection(
        name="res3_1", input=tmp, num_filters1=128, num_filters2=512)
    for i in xrange(2, res3_num + 1, 1):
        tmp = bottleneck_block(
            name="res3_" + str(i),
            input=tmp,
            num_filters1=128,
            num_filters2=512)

    # conv4_x: 14x14
    tmp = mid_projection(
        name="res4_1", input=tmp, num_filters1=256, num_filters2=1024)
    for i in xrange(2, res4_num + 1, 1):
        tmp = bottleneck_block(
            name="res4_" + str(i),
            input=tmp,
            num_filters1=256,
            num_filters2=1024)

    # conv5_x: 7x7
    tmp = mid_projection(
        name="res5_1", input=tmp, num_filters1=512, num_filters2=2048)
    for i in xrange(2, res5_num + 1, 1):
        tmp = bottleneck_block(
            name="res5_" + str(i),
            input=tmp,
            num_filters1=512,
            num_filters2=2048)

    tmp = img_pool_layer(
        name='avgpool',
        input=tmp,
        pool_size=7,
        stride=1,
        pool_type=AvgPooling())

    return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation())


if layer_num == 50:
    resnet = deep_res_net(3, 4, 6, 3)
elif layer_num == 101:
    resnet = deep_res_net(3, 4, 23, 3)
elif layer_num == 152:
    resnet = deep_res_net(3, 8, 36, 3)
else:
    print("Wrong layer number.")

T
tensor-tang 已提交
223 224 225 226 227 228
if is_infer:
    outputs(resnet)
else:
    lbl = data_layer(name="label", size=num_class)
    loss = cross_entropy(name='loss', input=resnet, label=lbl)
    outputs(loss)