test_imperative_reinforcement.py 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
26
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
27 28 29 30 31 32
import paddle.fluid.dygraph.nn as nn
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope


class Policy(fluid.dygraph.Layer):
33 34
    def __init__(self, input_size):
        super(Policy, self).__init__()
35

36 37
        self.affine1 = nn.Linear(input_size, 128)
        self.affine2 = nn.Linear(128, 2)
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
        self.dropout_ratio = 0.6

        self.saved_log_probs = []
        self.rewards = []

    def forward(self, inputs):
        x = fluid.layers.reshape(inputs, shape=[-1, 4])
        x = self.affine1(x)
        x = fluid.layers.dropout(x, self.dropout_ratio)
        x = fluid.layers.relu(x)
        action_scores = self.affine2(x)
        return fluid.layers.softmax(action_scores, axis=1)


class TestImperativeMnist(unittest.TestCase):
    def test_mnist_float32(self):
        seed = 90
        epoch_num = 1

        state = np.random.normal(size=4).astype("float32")
        state_list = state.tolist()
        reward = np.random.random(size=[1, 1]).astype("float32")
        reward_list = reward.tolist()
        action_list = [1]
        action = np.array(action_list).astype("float32")
        mask_list = [[0, 1]]
        mask = np.array(mask_list).astype("float32")

        with fluid.dygraph.guard():
C
cnn 已提交
67
            paddle.seed(seed)
L
Leo Chen 已提交
68
            paddle.framework.random._manual_program_seed(seed)
69

70
            policy = Policy(input_size=4)
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

            dy_state = fluid.dygraph.base.to_variable(state)
            dy_state.stop_gradient = True
            loss_probs = policy(dy_state)

            dy_mask = fluid.dygraph.base.to_variable(mask)
            dy_mask.stop_gradient = True

            loss_probs = fluid.layers.log(loss_probs)
            loss_probs = fluid.layers.elementwise_mul(loss_probs, dy_mask)
            loss_probs = fluid.layers.reduce_sum(loss_probs, dim=-1)

            dy_reward = fluid.dygraph.base.to_variable(reward)
            dy_reward.stop_gradient = True

            loss_probs = fluid.layers.elementwise_mul(dy_reward, loss_probs)
            loss = fluid.layers.reduce_sum(loss_probs)

89 90
            sgd = SGDOptimizer(
                learning_rate=1e-3, parameter_list=policy.parameters())
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

            dy_param_init_value = {}

            dy_out = loss.numpy()

            for param in policy.parameters():
                dy_param_init_value[param.name] = param.numpy()

            loss.backward()
            sgd.minimize(loss)
            policy.clear_gradients()

            dy_param_value = {}
            for param in policy.parameters():
                dy_param_value[param.name] = param.numpy()

        with new_program_scope():
C
cnn 已提交
108
            paddle.seed(seed)
L
Leo Chen 已提交
109
            paddle.framework.random._manual_program_seed(seed)
110 111 112 113

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

114
            policy = Policy(input_size=4)
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

            st_sgd = SGDOptimizer(learning_rate=1e-3)

            st_state = fluid.layers.data(
                name='st_state', shape=[4], dtype='float32')
            st_reward = fluid.layers.data(
                name='st_reward', shape=[1], dtype='float32')
            st_mask = fluid.layers.data(
                name='st_mask', shape=[2], dtype='float32')

            st_loss_probs = policy(st_state)

            st_loss_probs = fluid.layers.log(st_loss_probs)
            st_loss_probs = fluid.layers.elementwise_mul(st_loss_probs, st_mask)
            st_loss_probs = fluid.layers.reduce_sum(st_loss_probs, dim=-1)

            st_loss_probs = fluid.layers.elementwise_mul(st_reward,
                                                         st_loss_probs)
            st_loss = fluid.layers.reduce_sum(st_loss_probs)

            st_sgd.minimize(st_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
            for param in policy.parameters():
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

            fetch_list = [st_loss.name]
            fetch_list.extend(static_param_name_list)

            out = exe.run(
                fluid.default_main_program(),
                feed={"st_state": state,
                      "st_reward": reward,
                      "st_mask": mask},
                fetch_list=fetch_list)

            static_param_value = {}
            static_out = out[0]
            for i in range(1, len(out)):
                static_param_value[static_param_name_list[i - 1]] = out[i]

        #self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))

        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(np.equal(value, dy_param_init_value[key]).all())

        self.assertTrue(np.equal(static_out, dy_out).all())

        for key, value in six.iteritems(static_param_value):
            self.assertTrue(np.equal(value, dy_param_value[key]).all())


if __name__ == '__main__':
    unittest.main()