nodes.h 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/tensor_wrapper.h"

class Conv2dGradNodeFinal : public egr::GradNodeBase {
 public:
  Conv2dGradNodeFinal() : egr::GradNodeBase() {}
  Conv2dGradNodeFinal(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
      : egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}
  ~Conv2dGradNodeFinal() override = default;

  virtual paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                               egr::kSlotSmallVectorSize>
  operator()(
      paddle::small_vector<std::vector<paddle::experimental::Tensor>,  // NOLINT
                           egr::kSlotSmallVectorSize>& grads,          // NOLINT
      bool create_graph = false,                                       // NOLINT
      bool is_new_grad = false) override;                              // NOLINT
  std::string name() override { return "Conv2dGradNodeFinal"; }

  void ClearTensorWrappers() override {
    input_.clear();
    filter_.clear();

    SetIsTensorWrappersCleared(true);
  }

  std::shared_ptr<GradNodeBase> Copy() const override {
    auto copied_node =
        std::shared_ptr<Conv2dGradNodeFinal>(new Conv2dGradNodeFinal(*this));
    VLOG(3) << "Copy Conv2dGradNodeFinal: " << this
            << " to: " << copied_node.get();
    return copied_node;
  }

  // SetTensorWrapperX, SetTensorWrapperY, ...
  void SetTensorWrapperinput(const paddle::experimental::Tensor& input) {
    input_ = egr::TensorWrapper(input, false);
  }
  void SetTensorWrapperfilter(const paddle::experimental::Tensor& filter) {
    filter_ = egr::TensorWrapper(filter, false);
  }

  // SetAttributes
  void SetAttributestrides(const std::vector<int>& strides) {
    strides_ = strides;
  }
  void SetAttributepaddings(const std::vector<int>& paddings) {
    paddings_ = paddings;
  }
  void SetAttributepaddding_algorithm(const std::string& paddding_algorithm) {
    paddding_algorithm_ = paddding_algorithm;
  }
  void SetAttributegroups(const int& groups) { groups_ = groups; }
  void SetAttributedilations(const std::vector<int>& dilations) {
    dilations_ = dilations;
  }
  void SetAttributedata_format(const std::string& data_format) {
    data_format_ = data_format;
  }
  void SetAttributeuse_addto(const bool& use_addto) { use_addto_ = use_addto; }
  void SetAttributeworkspace_size_MB(const int& workspace_size_MB) {
    workspace_size_MB_ = workspace_size_MB;
  }
  void SetAttributeexhaustive_search(const bool& exhaustive_search) {
    exhaustive_search_ = exhaustive_search;
  }

 private:
  // TensorWrappers
  egr::TensorWrapper input_;
  egr::TensorWrapper filter_;

  // Attributes
  std::vector<int> strides_;
  std::vector<int> paddings_;
  std::string paddding_algorithm_;
  int groups_;
  std::vector<int> dilations_;
  std::string data_format_;
  bool use_addto_;
  int workspace_size_MB_;
  bool exhaustive_search_;
};

class Conv2dDoubleGradNodeFinal : public egr::GradNodeBase {
 public:
  Conv2dDoubleGradNodeFinal() : egr::GradNodeBase() {}
  Conv2dDoubleGradNodeFinal(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
      : egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}
  ~Conv2dDoubleGradNodeFinal() override = default;

  virtual paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                               egr::kSlotSmallVectorSize>
  operator()(
      paddle::small_vector<std::vector<paddle::experimental::Tensor>,  // NOLINT
                           egr::kSlotSmallVectorSize>& grads,          // NOLINT
      bool create_graph = false,                                       // NOLINT
      bool is_new_grad = false) override;                              // NOLINT
  std::string name() override { return "Conv2dDoubleGradNodeFinal"; }

  void ClearTensorWrappers() override {
    input_.clear();
    filter_.clear();
    grad_out_.clear();

    SetIsTensorWrappersCleared(true);
  }

  std::shared_ptr<GradNodeBase> Copy() const override {
    auto copied_node = std::shared_ptr<Conv2dDoubleGradNodeFinal>(
        new Conv2dDoubleGradNodeFinal(*this));
    return copied_node;
  }

  // SetTensorWrapperX, SetTensorWrapperY, ...
  void SetTensorWrapperinput(const paddle::experimental::Tensor& input) {
    input_ = egr::TensorWrapper(input, false);
  }
  void SetTensorWrapperfilter(const paddle::experimental::Tensor& filter) {
    filter_ = egr::TensorWrapper(filter, false);
  }
  void SetTensorWrappergrad_out(const paddle::experimental::Tensor& grad_out) {
    grad_out_ = egr::TensorWrapper(grad_out, false);
  }

  // SetAttributes
  void SetAttributestrides(const std::vector<int>& strides) {
    strides_ = strides;
  }
  void SetAttributepaddings(const std::vector<int>& paddings) {
    paddings_ = paddings;
  }
  void SetAttributepaddding_algorithm(const std::string& paddding_algorithm) {
    paddding_algorithm_ = paddding_algorithm;
  }
  void SetAttributegroups(const int& groups) { groups_ = groups; }
  void SetAttributedilations(const std::vector<int>& dilations) {
    dilations_ = dilations;
  }
  void SetAttributedata_format(const std::string& data_format) {
    data_format_ = data_format;
  }
  void SetAttributeuse_addto(const bool& use_addto) { use_addto_ = use_addto; }
  void SetAttributeworkspace_size_MB(const int& workspace_size_MB) {
    workspace_size_MB_ = workspace_size_MB;
  }
  void SetAttributeexhaustive_search(const bool& exhaustive_search) {
    exhaustive_search_ = exhaustive_search;
  }

 private:
  // TensorWrappers
  egr::TensorWrapper input_;
  egr::TensorWrapper filter_;
  egr::TensorWrapper grad_out_;

  // Attributes
  std::vector<int> strides_;
  std::vector<int> paddings_;
  std::string paddding_algorithm_;
  int groups_;
  std::vector<int> dilations_;
  std::string data_format_;
  bool use_addto_;
  int workspace_size_MB_;
  bool exhaustive_search_;
};