op_compat.yaml 19.3 KB
Newer Older
1
- op : abs
2 3 4 5
  backward : abs_grad
  extra :
    attrs : [bool use_cudnn = false, bool use_mkldnn = false]

6 7 8 9 10
- op : acosh
  backward : acosh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

11 12 13 14 15 16
- op : add (elementwise_add)
  backward : add_grad (elementwise_add_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

17
- op : addmm
18 19 20 21
  backward : addmm_grad
  extra :
    attrs : [bool use_mkldnn = false]

22
- op : affine_grid
23 24 25 26
  backward : affine_grid_grad
  extra :
    attrs : [bool use_cudnn = true]

27
- op : angle
28 29 30
  backward : angle_grad
  extra :
    attrs : [bool use_cudnn = false, bool use_mkldnn = false]
31

32 33 34 35 36 37
- op : asinh
  backward : asinh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : atan2
38
  inputs :
39
    {x : X1, y : X2}
40 41 42
  outputs :
    out : Out

43 44 45 46 47 48
- op : atanh
  backward : atanh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : batch_norm
49 50 51 52
  backward : batch_norm_grad
  extra :
    attrs : [bool use_mkldnn = false, bool fuse_with_relu = false]

53
- op : bernoulli
54 55 56 57 58
  inputs :
    x : X
  outputs :
    out : Out

59
- op : bicubic_interp (bicubic_interp_v2)
60 61 62 63
  backward : bicubic_interp_grad (bicubic_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

64
- op : bilinear_interp (bilinear_interp_v2)
65 66 67 68
  backward : bilinear_interp_grad (bilinear_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

69 70 71 72 73 74
- op : ceil
  backward : ceil_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : cholesky
75 76 77 78 79
  inputs :
    x : X
  outputs :
    out : Out

80
- op : cholesky_solve
81 82 83 84 85
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

86
- op : clip
87 88 89 90
  backward : clip_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

91
- op : concat
92 93 94 95
  backward : concat_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_quantizer = false, str mkldnn_data_type = "float32"]

96
- op : conv2d
97
  backward : conv2d_grad
98
  extra :
99
    attrs : [bool is_test = false, bool use_cudnn = true, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false,
100
             bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
101
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false,
102 103
             bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f,
             float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false,
104
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]
105

106
- op : conv2d_fusion
F
Feiyu Chan 已提交
107
  extra :
108
    attrs : [bool is_test = false, bool use_cudnn = false, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false,
F
Feiyu Chan 已提交
109
             bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
110
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false,
F
Feiyu Chan 已提交
111 112
             bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f,
             float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false,
113 114
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]

115
- op : conv2d_transpose
116 117 118 119 120 121 122
  backward : conv2d_transpose_grad
  extra :
    attrs : [bool is_test = false, bool use_cudnn = true, bool use_mkldnn = false, bool force_fp32_output = false,
             str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f,
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()]

123
- op : conv3d
124 125 126 127 128 129 130
  backward : conv3d_grad
  extra :
    attrs : [bool is_test = false, bool use_cudnn = true, bool use_mkldnn = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f,
             bool use_addto = false, bool fuse_residual_connection = false, bool force_fp32_output = false,
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]

131
- op : conv3d_transpose
132 133 134
  backward : conv3d_transpose_grad
  extra :
    attrs : [bool use_cudnn = true, bool use_mkldnn = false, int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()]
F
Feiyu Chan 已提交
135

136 137 138 139 140 141 142 143 144 145 146
- op : cos
  backward : cos_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : cosh
  backward : cosh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : cross
147 148
  inputs :
    {x : X, y : Y}
149 150 151 152 153
  attrs :
    axis : dim
  outputs :
    out : Out

154
- op : data_norm
155 156 157 158
  backward : data_norm_grad
  extra :
    attrs : [bool use_mkldnn = false]

159
- op : depthwise_conv2d
160 161
  backward : depthwise_conv2d_grad
  extra :
162
    attrs : [bool is_test = false, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false,
163 164 165 166
             bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false,
             bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f,
             float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false,
167 168
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]

169
- op : depthwise_conv2d_transpose
170 171 172 173 174 175
  backward : depthwise_conv2d_transpose_grad
  extra :
    attrs : [bool is_test = false, bool use_cudnn = false, bool use_mkldnn = false, bool force_fp32_output = false,
             str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f,
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()]
176

177
- op : diag (diag_v2)
178
  backward : diag_grad (diag_v2_grad)
179 180 181 182 183
  inputs :
    x : X
  outputs :
    out : Out

184
- op : diagonal
185 186 187 188 189
  inputs :
    x : Input
  outputs :
    out : Out

190
- op : digamma
191 192 193 194 195
  inputs :
    x : X
  outputs :
    out : Out

196
- op : dist
197 198 199 200 201
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

202 203 204 205 206 207
- op : divide (elementwise_div)
  backward : divide_grad (elementwise_div)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

208
- op : dot
209 210 211 212 213
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

214
- op : dropout
215 216 217 218
  backward : dropout_grad
  extra :
    attrs : [bool fix_seed = false, int seed = 0]

219
- op : dropout_nd
220 221 222 223
  backward : dropout_nd_grad
  extra :
    attrs : [bool fix_seed = false, int seed = 0]

224 225 226 227 228 229
- op : elementwise_pow
  backward : elementwise_pow_grad
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

230 231 232 233 234 235
- op : elu
  backward : elu_grad
  extra :
    attrs : [bool use_mkldnn = false]

- op : erf
236 237 238 239 240
  inputs :
    x : X
  outputs :
    out : Out

241
- op : erfinv
242 243 244 245 246
  inputs :
    x : X
  outputs :
    out : Out

247 248 249 250 251
- op : exp
  backward : exp_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

252 253 254 255 256
- op : expand (expand_v2)
  backward : expand_grad (expand_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

257 258 259 260 261 262
- op : expm1
  backward : expm1_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : fft_c2c
263 264 265
  inputs: {x: X}
  outputs: {out: Out}

266
- op : fft_c2r
267 268 269
  inputs: {x: X}
  outputs: {out: Out}

270
- op : fft_r2c
271 272 273
  inputs: {x: X}
  outputs: {out: Out}

274 275 276 277 278
- op : floor
  backward : floor_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
- op : floor_divide (elementwise_floordiv)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

- op : fmax (elementwise_fmax)
  backward : fmax_grad (elementwise_fmax_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

- op : fmin (elementwise_fmin)
  backward : fmin_grad (elementwise_fmin_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

296
- op : frobenius_norm
297 298 299 300
  backward : frobenius_norm_grad
  extra :
    attrs : [bool use_mkldnn = false]

301 302 303 304 305 306 307 308 309
- op : full (fill_constant)
  extra :
    attrs : [bool use_mkldnn = false]

- op : gather
  backward : gather_grad
  extra :
    attrs : [bool overwrite = true]

310
- op : gelu
311 312 313 314
  backward : gelu_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool use_cudnn = false]

315 316 317 318 319
- op : grad_add
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

320
- op : grid_sampler
321 322 323 324
  backward : grid_sampler_grad
  extra :
    attrs : [bool use_cudnn = true]

325
- op : gru
326 327 328 329
  backward : gru_grad
  extra :
    attrs : [bool is_test = false]

330 331 332 333 334
- op : hard_swish
  backward : hard_swish_grad
  extra :
    attrs : [bool use_mkldnn = false]

335 336 337 338 339 340
- op : heaviside (elementwise_heaviside)
  backward : heaviside_grad (elementwise_heaviside_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

341
- op : inplace_abn
342 343 344 345
  backward : inplace_abn_grad
  extra :
    attrs : [bool use_mkldnn = false, bool fuse_with_relu = false]

346
- op : layer_norm
347 348 349 350
  backward : layer_norm_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false]

351 352 353 354 355 356
- op : leaky_relu
  backward : leaky_relu_grad
  extra :
    attrs : [bool use_mkldnn = false]

- op : lgamma
357 358 359 360 361
  inputs :
    x : X
  outputs :
    out : Out

362
- op : linear_interp (linear_interp_v2)
363 364 365 366
  backward : linear_interp_grad (linear_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
- op : log
  backward : log_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : log10
  backward : log10_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : log1p
  backward : log1p_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : log2
  backward : log2_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : log_softmax
388 389 390 391
  backward : log_softmax_grad
  extra :
    attrs : [bool use_mkldnn = false]

392 393 394 395 396 397
- op : logsigmoid
  backward : logsigmoid_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : lrn
398 399 400 401
  backward : lrn_grad
  extra :
    attrs : [bool use_mkldnn = false, bool is_test = false]

402
- op : matmul (matmul_v2)
403 404 405 406
  backward : matmul_grad (matmul_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false, 'int[] fused_reshape_Out = {}', 'int[] fused_transpose_Out = {}',
             str mkldnn_data_type = "float32", 'int[] fused_reshape_X = {}', 'int[] fused_reshape_Y = {}',
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
             'int[] fused_transpose_X = {}', 'int[] fused_transpose_Y = {}']

- op : matmul_with_flatten (mul)
  backward : matmul_with_flatten_grad (mul_grad)
  extra :
    attrs : [bool use_mkldnn = false, float scale_x = 1.0f, 'float[] scale_y = {1.0f}',
             float scale_out = 1.0f, bool force_fp32_output = false]

- op : maximum (elementwise_max)
  backward : maximum_grad (elementwise_max_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

- op : maximum (elementwise_min)
  backward : maximum_grad (elementwise_min_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]
426

427 428 429 430 431
- op : mish
  backward : mish_grad
  extra :
    attrs : [bool use_mkldnn = false]

432 433 434 435 436 437
- op : multiply (elementwise_mul)
  backward : multiply_grad (elementwise_mul_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

438
- op : mv
439 440 441 442 443
  inputs :
    {x : X, vec : Vec}
  outputs :
    out : Out

444
- op : nearest_interp (nearest_interp_v2)
445 446 447 448
  backward : nearest_interp_grad (nearest_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

449
- op : pad2d
450 451 452 453
  backward : pad2d_grad
  extra :
    attrs : [bool use_mkldnn = false]

454
- op : pad3d
455 456 457 458
  backward : pad3d_grad
  extra :
    attrs : [bool use_mkldnn = false]

459
- op : partial_sum
460 461 462 463
  backward : partial_sum_grad
  extra :
    attrs : [bool use_mkldnn = false]

464
- op : poisson
465 466 467 468 469
  inputs :
    x : X
  outputs :
    out : Out

470 471 472 473 474 475 476 477 478 479 480
- op : pool2d
  backward : pool2d_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_quantizer = false,
              str mkldnn_data_type = "float32", bool is_test = false]

- op : pool3d
  backward : pool3d_grad
  extra :
    attrs : [bool use_mkldnn = false]

481 482 483 484 485 486 487 488 489 490 491
- op : prelu
  backward : prelu_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false]

- op : reciprocal
  backward : reciprocal_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : reduce_all
492 493 494
  extra :
    attrs : [bool use_mkldnn = false]

495
- op : reduce_amax
496 497 498 499
  backward : reduce_amax_grad
  extra :
    attrs : [bool use_mkldnn = false]

500
- op : reduce_amin
501 502 503 504
  backward : reduce_amin_grad
  extra :
    attrs : [bool use_mkldnn = false]

505
- op : reduce_any
506 507 508
  extra :
    attrs : [bool use_mkldnn = false]

509
- op : reduce_max
510 511 512 513
  backward : reduce_max_grad
  extra :
    attrs : [bool use_mkldnn = false]

514
- op : reduce_mean
515 516 517 518
  backward : reduce_mean_grad
  extra :
    attrs : [bool use_mkldnn = false]

519
- op : reduce_min
520 521 522 523
  backward : reduce_min_grad
  extra :
    attrs : [bool use_mkldnn = false]

524
- op : reduce_prod
525 526 527 528
  backward : reduce_prod_grad
  extra :
    attrs : [bool use_mkldnn = false]

529
- op : reduce_sum
530 531 532 533
  backward : reduce_sum_grad
  extra :
    attrs : [bool use_mkldnn = false]

534 535 536 537 538 539 540 541 542 543
- op : relu
  backward : relu_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : relu6
  backward : relu6_grad
  extra :
    attrs : [bool use_mkldnn = false]

544 545 546 547 548
- op : remainder (elementwise_mod)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

549
- op : renorm
550 551 552 553
  backward : renorm_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

554
- op : rnn
555 556 557 558
  backward : rnn_grad
  extra :
    attrs : [bool is_test = false]

559 560 561 562 563 564 565 566 567 568
- op : round
  backward : round_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : rsqrt
  backward : rsqrt_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

569 570 571 572
- op : scale
  extra :
    attrs : [bool use_mkldnn = false]

573
- op : seed
574 575 576
  extra :
    attrs : [bool deterministic = false, str rng_name = "", bool force_cpu = false]

577
- op : shape
578 579 580
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

581
- op : shuffle_channel
582 583 584 585
  backward : shuffle_channel_grad
  extra :
    attrs : [bool use_mkldnn = false]

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
- op : sigmoid
  backward : sigmoid_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : silu
  backward : silu_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : sin
  backward : sin_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : sinh
  backward : sinh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : slice
607 608 609 610
  backward : slice_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

611
- op : softmax
612 613 614
  backward : softmax_grad
  extra :
    attrs : [bool use_cudnn = false, bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false]
615 616 617

- op : softplus
  backward : softplus_grad
618
  extra :
619 620 621 622 623 624 625
    attrs : [bool use_mkldnn = false, bool use_cudnn = false, str fuse_activation_type = "", float fuse_activation_alpha = 0.0f,
             float fuse_activation_beta = 0.0f, float fuse_activation_scale = 1.0f]

- op : softsign
  backward : softsign_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]
626

627
- op : solve
628 629 630 631 632
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

633 634 635 636 637 638 639 640 641 642 643
- op : sqrt
  backward : sqrt_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : square
  backward : square_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : squeeze (squeeze2)
644 645 646 647
  backward : squeeze_grad (squeeze2_grad)
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

648
- op : stack
649 650 651 652
  backward : stack_grad
  extra :
    attrs : [bool use_mkldnn = false]

653 654 655 656 657 658 659 660 661 662 663
- op : stack
  backward : stack_grad
  extra :
    attrs : [bool use_mkldnn = false]

- op : subtract (elementwise_sub)
  backward : subtract_grad (elementwise_sub_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

664 665 666 667 668 669
- op : swish
  backward : swish_grad
  extra :
    attrs : [bool use_mkldnn = false]

- op : sync_batch_norm
670 671 672 673
  backward : sync_batch_norm_grad
  extra :
    attrs : [bool use_mkldnn = false, bool fuse_with_relu = false]

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
- op : tan
  backward : tan_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : tanh
  backward : tanh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : tanh_shrink
  backward : tanh_shrink_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

- op : trace
690 691 692 693
  inputs :
    x : Input
  outputs :
    out : Out
694

695 696 697 698 699 700
- op : transpose (transpose2)
  backward : transpose_grad (transpose2_grad)
  extra :
    attrs : [bool use_mkldnn = false, str data_format = "AnyLayout", bool use_quantizer = false,
              str mkldnn_data_type = "float32"]

701
- op : trilinear_interp (trilinear_interp_v2)
702 703 704 705
  backward : trilinear_interp_grad (trilinear_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

706
- op : trunc
707 708 709 710
  inputs :
    x : X
  outputs :
    out : Out