paddle_model_convertor.cc 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
// Copyright (c) 2021 CINN Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/cinn/frontend/paddle_model_convertor.h"

#include <glog/logging.h>

#include <algorithm>
#include <unordered_set>
#include <utility>

#include "paddle/cinn/frontend/op_mappers/use_op_mappers.h"
#include "paddle/cinn/frontend/paddle/cpp/op_desc.h"
#include "paddle/cinn/frontend/paddle/cpp/program_desc.h"
#include "paddle/cinn/frontend/paddle/model_parser.h"
#include "paddle/cinn/frontend/var_type_utils.h"
#include "paddle/cinn/hlir/op/use_ops.h"

namespace cinn {
namespace frontend {

using cinn::utils::Attribute;

PaddleModelConvertor::PaddleModelConvertor() : PaddleModelConvertor(common::DefaultTarget(), nullptr, nullptr) {}

PaddleModelConvertor::PaddleModelConvertor(const common::Target& target,
                                           std::shared_ptr<NetBuilder> builder,
                                           std::shared_ptr<hlir::framework::Scope> scope)
    : target_(target), builder_(builder), scope_(scope) {
  if (!builder_) {
    // do not need scope
    builder_ = std::make_shared<NetBuilder>(cinn::UniqName("PaddleModelConvertor"));
  }
  if (!scope_) {
    // do not need scope
    scope_ = hlir::framework::Scope::Create();
  }
  ctx_ = std::make_unique<OpMapperContext>(
      *scope_, target_, builder_.get(), &var_map_, &var_model_to_program_map_, &fetch_var_names_);
}

void PaddleModelConvertor::PrepareRun(const paddle::cpp::BlockDesc& block_desc, OpMapperContext* ctx) {
  std::unordered_map<std::string, const paddle::cpp::VarDesc*> var_desc_map;
  // preserve var desc info lik shape and dtype
  for (int i = 0; i < block_desc.VarsSize(); i++) {
    const auto& var_desc          = block_desc.GetConstVar<paddle::cpp::VarDesc>(i);
    var_desc_map[var_desc.Name()] = &var_desc;
  }

  for (int i = 0; i < block_desc.OpsSize(); i++) {
    const auto& op_desc = block_desc.GetConstOp<paddle::cpp::OpDesc>(i);

    if (op_desc.Type() == "feed") {
      for (const auto& var_name : op_desc.output_vars()) {
        CHECK(var_desc_map.count(var_name)) << "Feed var [" << var_name << "] Not found in block";
        ctx->AddFeedInfo(var_name, utils::GetFeedInfoFromDesc(*var_desc_map[var_name]));
      }
    }
  }
}

void PaddleModelConvertor::RunOp(const paddle::cpp::OpDesc& op_desc, const OpMapperContext& ctx) {
  const auto& op_type = op_desc.Type();
  auto kernel         = OpMapperRegistry::Global()->Find(op_type);
  CHECK(kernel) << "Op [" << op_type << "] Not supported in OpMapper";
  VLOG(4) << "Running Op " << op_type;
  kernel->Run(op_desc, ctx);
}

std::unordered_map<std::string, Variable> PaddleModelConvertor::GetFetchList(
    const std::unordered_set<std::string>& fetch_name_list) const {
  // the return map's key is paddle variable name, the value is the cinn fetch variable
  const std::unordered_set<std::string>* var_name_list = &fetch_name_list;
  if (fetch_name_list.empty()) {
    // if paddle var list is empty, fetch the program's fetch var instead
    CHECK(!fetch_var_names_.empty()) << "Should not fetch empty variable in CINN.";
    var_name_list = &fetch_var_names_;
  }

  std::unordered_map<std::string, Variable> fetch_list;
  fetch_list.reserve(var_name_list->size());
  for (const auto& pd_name : *var_name_list) {
    CHECK(var_model_to_program_map_.count(pd_name))
        << "Cannot find cinn variable [" << pd_name << "] in var_model_to_program_map_";
    auto norm_pd_name = pd_name;
    // remove inplace output's suffix
    auto pos = pd_name.find(paddle::InplaceOutSuffix);
    if (pos != std::string::npos) {
      norm_pd_name.replace(pos, sizeof(paddle::InplaceOutSuffix), "");
    }
    fetch_list[pd_name] = var_map_.at(norm_pd_name);
  }
  return fetch_list;
}

Program PaddleModelConvertor::LoadModel(const std::string& model_dir,
                                        bool is_combined,
                                        const std::unordered_map<std::string, std::vector<int64_t>>& feed) {
  paddle::cpp::ProgramDesc program_desc;
  paddle::LoadModelPb(model_dir, "__model__", "", scope_.get(), &program_desc, is_combined, false, target_);
  CHECK_EQ(program_desc.BlocksSize(), 1) << "CINN can only support the model with a single block";
  auto* block_desc = program_desc.GetBlock<paddle::cpp::BlockDesc>(0);

  // Set feeds shape
  for (int i = 0; i < block_desc->VarsSize(); i++) {
    auto* var_desc      = block_desc->GetVar<paddle::cpp::VarDesc>(i);
    const auto var_name = var_desc->Name();
    if (feed.count(var_name)) {
      const auto& var_shape = feed.at(var_name);
      VLOG(4) << "Update var " << var_name << "'s shape to: " << cinn::utils::Join(var_shape, ", ");
      var_desc->SetShape(var_shape);
    }
  }

  OpMapperContext ctx(*scope_, target_, builder_.get(), &var_map_, &var_model_to_program_map_, &fetch_var_names_);

  PrepareRun(*block_desc, &ctx);
  for (int i = 0; i < block_desc->OpsSize(); i++) {
    auto* op_desc = block_desc->GetOp<paddle::cpp::OpDesc>(i);
    RunOp(*op_desc, ctx);
  }
  return builder_->Build();
}

void SetOpDescAttr(const std::string& attr_name, const Attribute& attr_value, paddle::cpp::OpDesc* op_desc) {
  class Visitor {
   public:
    Visitor(paddle::cpp::OpDesc* op_desc, const std::string& attr_name) : op_desc_(op_desc), attr_name_(attr_name) {}

#define VISITOR_EXPAND(TYPE) \
  void operator()(const TYPE& v) { op_desc_->SetAttr(attr_name_, v); }

    VISITOR_EXPAND(bool)
    VISITOR_EXPAND(float)
    VISITOR_EXPAND(int)
    VISITOR_EXPAND(std::string)
    VISITOR_EXPAND(std::vector<bool>)
    VISITOR_EXPAND(std::vector<int>)
    VISITOR_EXPAND(std::vector<float>)
    VISITOR_EXPAND(std::vector<std::string>)
    VISITOR_EXPAND(int64_t)
    VISITOR_EXPAND(double)
    VISITOR_EXPAND(std::vector<int64_t>)
    VISITOR_EXPAND(std::vector<double>)
#undef VISITOR_EXPAND

   private:
    paddle::cpp::OpDesc* op_desc_;
    const std::string& attr_name_;
  };
  absl::visit(Visitor{op_desc, attr_name}, attr_value);
}

void PaddleModelConvertor::RunOp(const std::string& op_type,
                                 const std::map<std::string, std::vector<std::string>>& inputs,
                                 const std::map<std::string, std::vector<std::string>>& outputs,
                                 const std::map<std::string, Attribute>& attrs,
                                 const OpMapperContext& ctx) {
  paddle::cpp::OpDesc op_desc;
  op_desc.SetType(op_type);
  for (const auto& in_pair : inputs) {
    op_desc.SetInput(in_pair.first, in_pair.second);
  }
  for (const auto& out_pair : outputs) {
    op_desc.SetOutput(out_pair.first, out_pair.second);
  }
  for (const auto& attr_pair : attrs) {
    SetOpDescAttr(attr_pair.first, attr_pair.second, &op_desc);
  }

  RunOp(op_desc, ctx);
}

void PaddleModelConvertor::RunOp(const std::string& op_type,
                                 const std::map<std::string, std::vector<std::string>>& inputs,
                                 const std::map<std::string, std::vector<std::string>>& outputs,
                                 const std::map<std::string, Attribute>& attrs) {
  RunOp(op_type, inputs, outputs, attrs, *ctx_);
}

Program PaddleModelConvertor::operator()() { return builder_->Build(); }

void PaddleModelConvertor::CreateInput(const std::string& dtype,
                                       const cinn::utils::ShapeType& shape,
                                       const std::string& name) {
  OpMapperContext::FeedInfo feed_info = {shape, common::Str2Type(dtype)};

  ctx_->AddFeedInfo(name, feed_info);
  RunOp("feed", {}, {{"Out", {name}}}, {});
}

}  // namespace frontend
}  // namespace cinn