net_builder.cc 42.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
// Copyright (c) 2021 CINN Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/cinn/frontend/net_builder.h"

#include <string>
#include <utility>
#include <vector>

#include "paddle/cinn/frontend/syntax.h"
#include "paddle/cinn/hlir/pe/broadcast.h"
#include "paddle/cinn/runtime/flags.h"
#include "paddle/cinn/utils/functional.h"
#include "paddle/cinn/utils/profiler.h"
#include "glog/logging.h"

namespace cinn {
namespace frontend {

using common::Context;
using common::Type;
using hlir::framework::Operator;
using utils::AttributeMap;
using utils::ShapeType;

NetBuilder::NetBuilder(const std::string& name) : name_(name) {}

Program NetBuilder::Build(bool in_reverse) {
  utils::RecordEvent("NetBuilder::Build", utils::EventType::kProgram);
  std::vector<Instruction> instrs;
  if (in_reverse) {
    instrs.reserve(instrs_.size());
    for (auto it = instrs_.rbegin(); it != instrs_.rend(); it++) {
      instrs.emplace_back(*it);
    }
  } else {
    instrs = std::move(instrs_);
  }

  Program program{std::move(instrs), std::move(inputs_)};
  program.Validate();
  return program;
}

void NetBuilder::InferShape(Instruction instr) const {
  using ShapeFunc           = std::function<std::vector<ShapeType>(const std::vector<ShapeType>&, const AttributeMap&)>;
  using TypeFunc            = std::function<std::vector<Type>(const std::vector<Type>&, const AttributeMap&)>;
  const auto& op_infershape = Operator::GetAttrs<ShapeFunc>("infershape");
  const auto& op_inferdtype = Operator::GetAttrs<TypeFunc>("inferdtype");

  size_t size = instr->inputs.size();
  std::vector<ShapeType> in_shapes(size);
  std::vector<Type> in_types(size);
  std::transform(
      instr->inputs.begin(), instr->inputs.end(), in_shapes.begin(), [](const Variable& var) { return var->shape; });
  std::transform(
      instr->inputs.begin(), instr->inputs.end(), in_types.begin(), [](const Variable& var) { return var->type; });
  auto key        = Operator::Get(instr->op_type);
  auto out_shapes = op_infershape[key](in_shapes, instr->attrs);
  auto out_types  = op_inferdtype[key](in_types, instr->attrs);

  auto& outs            = instr->outputs;
  size_t origin_out_num = outs.size();
  outs.resize(out_shapes.size());
  for (size_t i = origin_out_num; i < outs.size(); i++) {
    outs[i] = Variable();
  }
  for (size_t i = 0; i < outs.size(); i++) {
    outs[i]->shape = out_shapes[i];
    outs[i]->type  = out_types[i];
  }
}

const std::vector<Variable>& NetBuilder::CustomInstr(const std::string& type,
                                                     const std::vector<Variable>& inputs,
                                                     const AttributeMap& attrs) {
  Instruction instr(type, inputs);
  for (auto& kv : attrs) {
    instr.SetAttr(kv.first, kv.second);
  }
  utils::RecordEvent("NetBuilder." + type, utils::EventType::kProgram);
  InferShape(instr);
  AppendInstruction(instr);
  return instr.GetOutputs();
}

Variable NetBuilder::BinaryOp(const std::string& op_type, const Variable& lhs, const Variable& rhs, int axis) {
  CHECK_EQ(lhs->type, rhs->type) << "The inputs type of op " << op_type << " should be equal!";
  return CustomInstr(op_type, {lhs, rhs}, {{"axis", axis}}).front();
}

Variable NetBuilder::UnaryOp(const std::string& op_type, const Variable& operand) {
  return CustomInstr(op_type, {operand}, {}).front();
}

Variable NetBuilder::Reduce(const std::string& op_type, const Variable& x, const std::vector<int>& dim, bool keep_dim) {
  // TODO(thisjiang): move the reduce simplify to frontend pass
  auto product = std::accumulate(x->shape.begin(), x->shape.end(), 1, std::multiplies<int>());
  if (product == 1) {
    if (keep_dim) {
      return Identity(x);
    } else {
      CHECK_GE(x->shape.size(), dim.size()) << "The inputs rank should be greater than or equal to axes.";
      int new_rank = x->shape.size() == dim.size() ? 1 : x->shape.size() - dim.size();
      std::vector<int> new_shape(new_rank, 1);
      return Reshape(x, new_shape);
    }
  }
  // Convert the negative dim to a positive number
  std::vector<int> reduce_dim(dim.begin(), dim.end());
  for (int i = 0; i < dim.size(); i++) {
    if (reduce_dim[i] < 0) {
      reduce_dim[i] = x->shape.size() + reduce_dim[i];
    }
  }
  return CustomInstr(op_type, {x}, {{"dim", reduce_dim}, {"keep_dim", keep_dim}}).front();
}

#define NETBUILDER_UNARY_OP_DEF(func_name__, op_type__) \
  Variable NetBuilder::func_name__(const Variable& operand) { return UnaryOp(#op_type__, operand); }
NETBUILDER_UNARY_OP_DEF(Sqrt, sqrt)
NETBUILDER_UNARY_OP_DEF(Tanh, tanh)
NETBUILDER_UNARY_OP_DEF(Relu, relu)
NETBUILDER_UNARY_OP_DEF(Gelu, gelu)
NETBUILDER_UNARY_OP_DEF(Sigmoid, sigmoid)
NETBUILDER_UNARY_OP_DEF(Identity, identity)
NETBUILDER_UNARY_OP_DEF(Exp, exp)
NETBUILDER_UNARY_OP_DEF(Erf, erf)
NETBUILDER_UNARY_OP_DEF(Rsqrt, rsqrt)
NETBUILDER_UNARY_OP_DEF(Log, log)
NETBUILDER_UNARY_OP_DEF(Log2, log2)
NETBUILDER_UNARY_OP_DEF(Log10, log10)
NETBUILDER_UNARY_OP_DEF(Floor, floor)
NETBUILDER_UNARY_OP_DEF(Ceil, ceil)
NETBUILDER_UNARY_OP_DEF(Round, round)
NETBUILDER_UNARY_OP_DEF(Trunc, trunc)
NETBUILDER_UNARY_OP_DEF(Sin, sin)
NETBUILDER_UNARY_OP_DEF(Cos, cos)
NETBUILDER_UNARY_OP_DEF(Tan, tan)
NETBUILDER_UNARY_OP_DEF(Sinh, sinh)
NETBUILDER_UNARY_OP_DEF(Cosh, cosh)
NETBUILDER_UNARY_OP_DEF(Asin, asin)
NETBUILDER_UNARY_OP_DEF(Acos, acos)
NETBUILDER_UNARY_OP_DEF(Atan, atan)
NETBUILDER_UNARY_OP_DEF(Asinh, asinh)
NETBUILDER_UNARY_OP_DEF(Acosh, acosh)
NETBUILDER_UNARY_OP_DEF(Atanh, atanh)
NETBUILDER_UNARY_OP_DEF(IsNan, isnan)
NETBUILDER_UNARY_OP_DEF(IsFinite, isfinite)
NETBUILDER_UNARY_OP_DEF(IsInf, isinf)
NETBUILDER_UNARY_OP_DEF(LogicalNot, logical_not)
NETBUILDER_UNARY_OP_DEF(BitwiseNot, bitwise_not)
NETBUILDER_UNARY_OP_DEF(Negative, negative)
NETBUILDER_UNARY_OP_DEF(Sign, sign)
NETBUILDER_UNARY_OP_DEF(Abs, abs)
NETBUILDER_UNARY_OP_DEF(Cbrt, cbrt)
NETBUILDER_UNARY_OP_DEF(Clz, clz)
NETBUILDER_UNARY_OP_DEF(Popc, popc)
NETBUILDER_UNARY_OP_DEF(Reciprocal, reciprocal)

#undef NETBUILDER_UNARY_OP_DEF

#define NETBUILDER_BINARY_OP_DEF(func_name__, op_type__)                                 \
  Variable NetBuilder::func_name__(const Variable& lhs, const Variable& rhs, int axis) { \
    return BinaryOp(#op_type__, lhs, rhs, axis);                                         \
  }
NETBUILDER_BINARY_OP_DEF(Add, elementwise_add)
NETBUILDER_BINARY_OP_DEF(ElementwiseAdd, elementwise_add)
NETBUILDER_BINARY_OP_DEF(Atan2, atan2)
NETBUILDER_BINARY_OP_DEF(Multiply, elementwise_mul)
NETBUILDER_BINARY_OP_DEF(ElementwiseMul, elementwise_mul)
NETBUILDER_BINARY_OP_DEF(Divide, divide)
NETBUILDER_BINARY_OP_DEF(Subtract, subtract)
NETBUILDER_BINARY_OP_DEF(FloorDivide, floor_divide)
NETBUILDER_BINARY_OP_DEF(Mod, mod)
NETBUILDER_BINARY_OP_DEF(Remainder, remainder)
NETBUILDER_BINARY_OP_DEF(Max, max)
NETBUILDER_BINARY_OP_DEF(Min, min)
NETBUILDER_BINARY_OP_DEF(Pow, pow)
NETBUILDER_BINARY_OP_DEF(LogicalAnd, logical_and)
NETBUILDER_BINARY_OP_DEF(LogicalOr, logical_or)
NETBUILDER_BINARY_OP_DEF(LogicalXor, logical_xor)
NETBUILDER_BINARY_OP_DEF(BitwiseAnd, bitwise_and)
NETBUILDER_BINARY_OP_DEF(BitwiseOr, bitwise_or)
NETBUILDER_BINARY_OP_DEF(BitwiseXor, bitwise_xor)
NETBUILDER_BINARY_OP_DEF(LeftShift, left_shift)
NETBUILDER_BINARY_OP_DEF(RightShift, right_shift)
NETBUILDER_BINARY_OP_DEF(GreaterThan, greater_than);
NETBUILDER_BINARY_OP_DEF(LessThan, less_than);
NETBUILDER_BINARY_OP_DEF(Equal, equal);
NETBUILDER_BINARY_OP_DEF(NotEqual, not_equal);
NETBUILDER_BINARY_OP_DEF(GreaterEqual, greater_equal);
NETBUILDER_BINARY_OP_DEF(LessEqual, less_equal);
NETBUILDER_BINARY_OP_DEF(LogicalRightShift, logical_right_shift);

#undef NETBUILDER_BINARY_OP_DEF

#define NETBUILDER_REDUCE_OP_DEF(func_name__, op_type__)                                            \
  Variable NetBuilder::func_name__(const Variable& x, const std::vector<int>& dim, bool keep_dim) { \
    std::vector<int> axes = dim;                                                                    \
    if (axes.size() == 0) {                                                                         \
      for (int idx = 0; idx < x->shape.size(); ++idx) {                                             \
        axes.push_back(idx);                                                                        \
      }                                                                                             \
    }                                                                                               \
    return Reduce(#op_type__, x, axes, keep_dim);                                                   \
  }

NETBUILDER_REDUCE_OP_DEF(ReduceSum, reduce_sum)
NETBUILDER_REDUCE_OP_DEF(ReduceProd, reduce_prod)
NETBUILDER_REDUCE_OP_DEF(ReduceMax, reduce_max)
NETBUILDER_REDUCE_OP_DEF(ReduceMin, reduce_min)
NETBUILDER_REDUCE_OP_DEF(ReduceAll, reduce_all)
NETBUILDER_REDUCE_OP_DEF(ReduceAny, reduce_any)

#undef NETBUILDER_REDUCE_OP_DEF

Placeholder NetBuilder::CreateInput(const Type& type, const std::vector<int>& shape, const std::string& id_hint) {
  if (!id_hint.empty()) {
    cinn::utils::TransValidVarName(id_hint);
  }
  std::string id = id_hint.empty() ? Context::Global().NewName("placeholder") : id_hint;

  inputs_.emplace_back(id);
  auto& var  = inputs_.back();
  var->type  = type;
  var->shape = shape;
  return Placeholder(var);
}

Placeholder NetBuilder::CreateInput(const Variable& var) {
  VLOG_IF(4, var->shape.empty()) << "The input's shape is empty, Create 0D-Tensor for " << var->id;
  CHECK(!var->type.is_unk()) << "The input's type is not set yet";
  inputs_.push_back(var);
  return Placeholder(var);
}

Variable NetBuilder::FillConstant(const std::vector<int>& shape,
                                  const std::string& str_value,
                                  const std::string& name,
                                  const std::string& dtype,
                                  bool force_cpu) {
  const auto& type = common::Str2Type(dtype);

  utils::Attribute value;
  if (type.is_float()) {
    value = std::stod(str_value);
  } else if (type.is_int() || type.is_uint()) {
    value = static_cast<int64_t>(std::stoll(str_value));
  } else if (type.is_bool()) {
    value = !cinn::runtime::CheckStringFlagFalse(str_value);
  } else {
    LOG(FATAL) << "FillConstant only support int/float/bool, but here " << dtype;
  }
  auto out =
      CustomInstr("fill_constant", {}, {{"shape", shape}, {"value", value}, {"dtype", dtype}, {"force_cpu", force_cpu}})
          .front();
  if (!name.empty()) {
    out.set_id(cinn::utils::TransValidVarName(name));
  }
  return out;
}

std::vector<Variable> NetBuilder::Split(const Variable& operand, const std::vector<int>& num_or_sections, int axis) {
  return CustomInstr("split", {operand}, {{"num_or_sections", num_or_sections}, {"axis", axis}});
}

Variable NetBuilder::Concat(const std::vector<Variable>& input_vars, int axis) {
  CHECK(!input_vars.empty()) << "The inputs of concat op should not be empty! Please check.";
  return CustomInstr("concat", input_vars, {{"axis", axis}}).front();
}

Variable NetBuilder::BroadcastTo(const Variable& operand, const std::vector<int>& out_shape) {
  auto x_shape_size = operand->shape.size();
  auto y_shape_size = out_shape.size();
  CHECK_GT(x_shape_size, 0) << "Cannot broadcast a empty operand " << operand->id << " to "
                            << cinn::utils::Join(out_shape, ",");
  CHECK_LE(x_shape_size, y_shape_size) << "The broadcast_p's input shape dimension should less than the output's, "
                                       << "but here (" << x_shape_size << " > " << y_shape_size << ").";

  VLOG(4) << "Try broadcast " << operand->id << " from shape (" << cinn::utils::Join(operand->shape, ",")
          << ") to shape (" << cinn::utils::Join(out_shape, ",") << ")";

  std::vector<int> broadcast_axes(x_shape_size, 0);
  if (x_shape_size > 1) {
    for (int i = 1; i <= x_shape_size; ++i) {
      CHECK((out_shape[y_shape_size - i] == operand->shape[x_shape_size - i]) ||
            (operand->shape[x_shape_size - i] == 1))
          << "We cannot broadcast from shape (" << cinn::utils::Join(operand->shape, ",") << ") to shape ("
          << cinn::utils::Join(out_shape, ",") << ")";
      broadcast_axes[x_shape_size - i] = y_shape_size - i;
    }
  } else {
    int axis     = -1;
    auto x_shape = operand->shape.at(0);
    if (x_shape == 1) {
      // Can broadcast directly, default axis 0
      axis = 0;
    } else {
      // The broadcast axes is the index of the shape in out_shape when the input dimension is 1
      for (int i = 0; i < y_shape_size; ++i) {
        if (out_shape[i] == x_shape) {
          axis = i;
          break;
        }
      }
      CHECK_NE(axis, -1) << "When we broadcast a 1-dimension shape, the number should contained in the out_shape. "
                         << "We cannot broadcast from shape (" << cinn::utils::Join(operand->shape, ",")
                         << ") to shape (" << cinn::utils::Join(out_shape, ",") << ")";
    }
    broadcast_axes[0] = axis;
  }

  return BroadcastTo(operand, out_shape, broadcast_axes);
}

Variable NetBuilder::BroadcastTo(const Variable& operand,
                                 const std::vector<int>& out_shape,
                                 const std::vector<int>& broadcast_axes) {
  return CustomInstr("broadcast_to", {operand}, {{"out_shape", out_shape}, {"broadcast_axes", broadcast_axes}}).front();
}

Variable NetBuilder::Reshape(const Variable& operand, const std::vector<int>& shape) {
  return CustomInstr("reshape", {operand}, {{"shape", shape}}).front();
}

Variable NetBuilder::Transpose(const Variable& operand, const std::vector<int>& axis) {
  return CustomInstr("transpose", {operand}, {{"axis", utils::GetPositiveAxes(axis, operand->shape.size())}}).front();
}

Variable NetBuilder::Slice(const Variable& operand,
                           const std::vector<int>& axes,
                           const std::vector<int>& starts,
                           const std::vector<int>& ends,
                           const std::vector<int>& infer_flags,
                           const std::vector<int>& strides,
                           const std::vector<int>& decrease_axis) {
  return CustomInstr("slice",
                     {operand},
                     {{"axes", axes},
                      {"starts", starts},
                      {"ends", ends},
                      {"infer_flags", infer_flags},
                      {"strides", strides},
                      {"decrease_axis", decrease_axis}})
      .front();
}

Variable NetBuilder::SliceAssign(const Variable& input,
                                 const Variable& assign,
                                 const std::vector<int>& axes,
                                 const std::vector<int>& starts,
                                 const std::vector<int>& ends,
                                 const std::vector<int>& strides) {
  return CustomInstr("slice_assign",
                     {input, assign},
                     {{"axes", axes}, {"starts", starts}, {"ends", ends}, {"strides", strides}})
      .front();
}

Variable NetBuilder::Reverse(const Variable& operand, const std::vector<int>& axis) {
  return CustomInstr("reverse", {operand}, {{"axis", utils::GetPositiveAxes(axis, operand->shape.size())}}).front();
}

Variable NetBuilder::Select(const Variable& condition, const Variable& true_value, const Variable& false_value) {
  return CustomInstr("select", {condition, true_value, false_value}, {}).front();
}

Variable NetBuilder::Gather(const Variable& operand, const Variable& index, int axis) {
  size_t x_ndim = operand->shape.size();
  if (axis < 0) {
    axis += static_cast<int>(x_ndim);
  }
  CHECK_LT(axis, x_ndim) << "Axis must be in [" << -x_ndim << ", " << x_ndim - 1 << ").";
  Variable transformed_index = index;
  // If we got 1-D Tensor, the first step is reshape, in order to keep operand.rank == index.rank
  if (index->shape.size() == 1) {
    std::vector<int> index_reshape(x_ndim, 1);
    index_reshape[axis] = index->shape[0];
    transformed_index   = Reshape(index, index_reshape);
  }
  // Then we need to broadcast transformed index
  auto broadcast_shape  = operand->shape;
  broadcast_shape[axis] = transformed_index->shape[axis];
  transformed_index     = BroadcastTo(transformed_index, broadcast_shape);
  return CustomInstr("gather", {operand, transformed_index}, {{"axis", axis}}).front();
}

Variable NetBuilder::ScatterAssign(const Variable& operand, const Variable& updates, const Variable& index, int axis) {
  return CustomInstr("scatter_assign", {operand, updates, index}, {{"axis", axis}}).front();
}

Variable NetBuilder::ScatterAdd(const Variable& operand, const Variable& updates, const Variable& index, int axis) {
  return CustomInstr("scatter_add", {operand, updates, index}, {{"axis", axis}}).front();
}

Variable NetBuilder::IsClose(const Variable& x, const Variable& y, float rtol, float atol, bool equal_nan) {
  return CustomInstr("isclose", {x, y}, {{"rtol", rtol}, {"atol", atol}, {"equal_nan", equal_nan}}).front();
}

Variable NetBuilder::Mul(const Variable& a, const Variable& b, int x_num_col_dims, int y_num_col_dims, bool is_infer) {
  return CustomInstr("mul",
                     {a, b},
                     {{"x_num_col_dims", x_num_col_dims}, {"y_num_col_dims", y_num_col_dims}, {"is_infer", is_infer}})
      .front();
}

const std::vector<Variable>& NetBuilder::ElementwiseAddGrad(const Variable& dout,
                                                            const Variable& x,
                                                            const Variable& y,
                                                            int axis) {
  return CustomInstr("elementwise_add_grad", {dout, x, y}, {{"axis", axis}});
}

Variable NetBuilder::Relu6(const Variable& a, float threshold) {
  return CustomInstr("relu6", {a}, {{"threshold", threshold}}).front();
}

Variable NetBuilder::ReluGrad(const Variable& lhs, const Variable& rhs) {
  return CustomInstr("relu_grad", {lhs, rhs}, {}).front();
}

Variable NetBuilder::GatherNd(const Variable& x, const Variable& index) {
  return CustomInstr("gather_nd", {x, index}, {}).front();
}

Variable NetBuilder::Cast(const Variable& operand, const std::string& dtype) {
  return CustomInstr("cast", {operand}, {{"dtype", dtype}}).front();
}

Variable NetBuilder::BitcastConvert(const Variable& operand, const std::string& dtype) {
  std::string input_data_type = common::Type2Str(operand->type);
  return CustomInstr("bitcast_convert", {operand}, {{"dtype", dtype}, {"input_data_type", input_data_type}}).front();
}

Variable NetBuilder::OneHot(const Variable& indices,
                            const Variable& on_value,
                            const Variable& off_value,
                            const int depth,
                            const int axis,
                            const std::string& dtype) {
  return CustomInstr("one_hot", {indices, on_value, off_value}, {{"depth", depth}, {"axis", axis}, {"dtype", dtype}})
      .front();
}

Variable NetBuilder::Squeeze(const Variable& operand, const std::vector<int>& axes) {
  return CustomInstr("squeeze", {operand}, {{"axes", axes}}).front();
}

Variable NetBuilder::ExpandDims(const Variable& operand, const cinn::utils::ShapeType& axes) {
  return CustomInstr("expand_dims", {operand}, {{"axes", axes}}).front();
}

Variable NetBuilder::Conv(const Variable& lhs,
                          const Variable& rhs,
                          const std::vector<int>& strides,
                          const std::vector<int>& paddings,
                          const std::vector<int>& dilations,
                          int groups,
                          const std::string& conv_type,
                          const std::string& data_format,
                          const std::string& padding_algorithm,
                          const std::vector<int>& output_shape) {
  return CustomInstr("conv2d",
                     {lhs, rhs},
                     {{"stride", strides},
                      {"padding", paddings},
                      {"dilation", dilations},
                      {"groups", groups},
                      {"conv_type", conv_type},
                      {"data_format", data_format},
                      {"padding_algorithm", padding_algorithm},
                      {"output_shape", output_shape}})
      .front();
}

std::vector<Variable> NetBuilder::ArgSort(const Variable& operand, const int& axis, const bool& is_ascend) {
  return CustomInstr("argsort", {operand}, {{"axis", axis}, {"is_ascend", is_ascend}});
}

Variable NetBuilder::Sort(const Variable& operand, const int& axis, const bool& is_ascend) {
  return CustomInstr("sort", {operand}, {{"axis", axis}, {"is_ascend", is_ascend}}).front();
}

Variable NetBuilder::Argmax(const Variable& x, const int& axis, const bool& keep_dim) {
  return CustomInstr("argmax", {x}, {{"axis", axis}, {"keep_dim", keep_dim}}).front();
}

Variable NetBuilder::Argmin(const Variable& x, const int& axis, const bool& keep_dim) {
  return CustomInstr("argmin", {x}, {{"axis", axis}, {"keep_dim", keep_dim}}).front();
}

Variable NetBuilder::LookupTable(const Variable& table, const Variable& ids, int64_t padding_idx) {
  return CustomInstr("lookup_table", {table, ids}, {{"padding_idx", padding_idx}}).front();
}

Variable NetBuilder::Conv2d(const Variable& a,
                            const Variable& b,
                            const std::vector<int>& strides,
                            const std::vector<int>& paddings,
                            const std::vector<int>& dilations,
                            int groups,
                            const std::string& data_format,
                            const std::string& padding_algorithm) {
  return Conv(a, b, strides, paddings, dilations, groups, "forward", data_format, padding_algorithm, {});
}

Variable NetBuilder::DepthwiseConv2d(const Variable& a,
                                     const Variable& b,
                                     const std::vector<int>& strides,
                                     const std::vector<int>& paddings,
                                     const std::vector<int>& dilations,
                                     int groups,
                                     const std::string& data_format,
                                     const std::string& padding_algorithm) {
  return CustomInstr("depthwise_conv2d",
                     {a, b},
                     {{"stride", strides},
                      {"padding", paddings},
                      {"dilation", dilations},
                      {"groups", groups},
                      {"data_format", data_format},
                      {"padding_algorithm", padding_algorithm}})
      .front();
}

std::vector<int> UpdatePool2dKernelSize(const std::vector<int>& x_shape,
                                        const std::vector<int>& ksize,
                                        const bool global_pooling,
                                        const std::string& data_format) {
  std::vector<int> new_ksize{ksize};
  // Setting h/w_axis according to data_format
  int height_axis = -1;
  int width_axis  = -1;
  if (data_format == "NCHW") {
    height_axis = 2;
    width_axis  = 3;
  } else if (data_format == "NHWC") {
    height_axis = 1;
    width_axis  = 2;
  } else {
    LOG(FATAL) << "Unsupport data_format: " << data_format;
  }
  if (global_pooling) {
    new_ksize[0] = x_shape[height_axis];
    new_ksize[1] = x_shape[width_axis];
  }
  return new_ksize;
}

std::vector<int> UpdatePool2dPaddings(const std::vector<int>& paddings,
                                      const std::vector<int>& x_shape,
                                      const std::vector<int>& ksize,
                                      const std::vector<int>& stride,
                                      const bool global_pooling,
                                      const bool adaptive,
                                      const std::string& padding_algorithm,
                                      const std::string& data_format) {
  std::vector<int> new_paddings{paddings};
  if (paddings.size() == 2) {
    new_paddings.insert(new_paddings.end(), paddings.begin(), paddings.end());
  }
  CHECK_EQ(new_paddings.size(), 4) << "Padding size must be 2 or 4, but got: " << paddings.size();
  // Setting h/w_axis according to data_format
  int height_axis = -1;
  int width_axis  = -1;
  if (data_format == "NCHW") {
    height_axis = 2;
    width_axis  = 3;
  } else if (data_format == "NHWC") {
    height_axis = 1;
    width_axis  = 2;
  } else {
    LOG(FATAL) << "Unsupport data_format: " << data_format;
  }
  // When padding_algorithm is VALID, set paddings to [0, 0, 0, 0].
  // When padding_algorithm is SAME, the calculation formula of padding is as follows:
  // output_h/w = ceil(input_h/w / stride_h/w)
  // padding_sum_h/w = (output_h/w - 1) * stride_h/w + kernel_h/w - input_h/w
  // padding_top/left = padding_sum_h/w / 2;
  // padding_bottom/right = padding_sum_h/w - padding_top/left
  if (padding_algorithm == "VALID") {
    new_paddings = {0, 0, 0, 0};
  } else if (padding_algorithm == "SAME") {
    int out_size_h = (x_shape[height_axis] + stride[0] - 1) / stride[0];
    int out_size_w = (x_shape[width_axis] + stride[1] - 1) / stride[1];
    int pad_sum_h  = std::max((out_size_h - 1) * stride[0] + ksize[0] - x_shape[height_axis], 0);
    int pad_sum_w  = std::max((out_size_w - 1) * stride[1] + ksize[1] - x_shape[width_axis], 0);
    int pad_top    = pad_sum_h / 2;
    int pad_bottom = pad_sum_h - pad_top;
    int pad_left   = pad_sum_w / 2;
    int pad_right  = pad_sum_w - pad_left;
    new_paddings   = {pad_top, pad_left, pad_bottom, pad_right};
  }
  // When global_pooling or adaptive is true, set paddings to [0, 0, 0, 0].
  if (global_pooling || adaptive) {
    new_paddings = {0, 0, 0, 0};
  }
  return new_paddings;
}

Variable NetBuilder::Pool2d(const Variable& a,
                            const std::string& pooling_type,
                            const std::vector<int>& ksize,
                            const std::vector<int>& strides,
                            const std::vector<int>& paddings,
                            bool ceil_mode,
                            bool exclusive,
                            bool global_pooling,
                            const std::string& data_format,
                            bool adaptive,
                            const std::string& padding_algorithm) {
  // Check input dim
  CHECK_EQ(a->shape.size(), 4) << "Input's dim must be 4, but " << a->id << "'s shape is ["
                               << cinn::utils::Join(a->shape, ", ") << "].";
  // Transform pool_type
  std::string pool_type;
  std::transform(pooling_type.begin(), pooling_type.end(), std::back_inserter(pool_type), [](unsigned char c) {
    return std::tolower(c);
  });
  CHECK(pool_type == "avg" || pool_type == "max") << "Pool_type must be avg or max, but got: " << pool_type;
  // Transform ksize
  std::vector<int> input_ksize{ksize};
  if (input_ksize.size() == 1) {
    input_ksize.insert(input_ksize.end(), ksize.begin(), ksize.end());
  }
  CHECK_EQ(input_ksize.size(), 2) << "Kernel_size length must be 1 or 2, but got: " << ksize.size();
  // Transform stride
  std::vector<int> new_strides{strides};
  if (new_strides.size() == 1) {
    new_strides.insert(new_strides.end(), strides.begin(), strides.end());
  }
  CHECK_EQ(new_strides.size(), 2) << "Stride length must be 1 or 2, but got: " << strides.size();
  CHECK(new_strides[0] > 0 && new_strides[1] > 0) << "the value of kernel size for pool2d should greater than 0.";
  // Transform data_format
  std::string new_data_format{data_format};
  if (new_data_format == "AnyLayout") {
    new_data_format.assign("NCHW");
  }
  CHECK(new_data_format == "NCHW" || new_data_format == "NHWC")
      << "Data_format must be AnyLayout/NCHW/NHWC, but got: " << data_format;
  // Check padding_algorithm
  CHECK(padding_algorithm == "EXPLICIT" || padding_algorithm == "SAME" || padding_algorithm == "VALID")
      << "Padding_algorithm must be EXPLICIT/SAME/VALID, but got: " << padding_algorithm;
  utils::AttributeMap attrs = {{"pool_type", pool_type},
                               {"origin_kernel_size", input_ksize},
                               {"stride_size", new_strides},
                               {"origin_padding_size", paddings},
                               {"ceil_mode", ceil_mode},
                               {"exclusive", exclusive},
                               {"origin_global_pooling", global_pooling},
                               {"data_format", new_data_format},
                               {"origin_adaptive", adaptive},
                               {"padding_algorithm", padding_algorithm}};
  // In avg_pool2d, if global_pooling = false, adaptive = true and ksize is [1, 1], we turn off adaptive and use global
  // pooling instead
  if (pooling_type == "avg" && !global_pooling && adaptive && input_ksize[0] == 1 && input_ksize[1] == 1) {
    VLOG(4) << "In avg_pool2d, got global_pooling = false, adaptive = true, ksize = [1, 1], turn off adaptive and "
               "trans to global_pooling";
    adaptive       = false;
    global_pooling = true;
  }
  // Transform paddings
  auto new_paddings = UpdatePool2dPaddings(
      paddings, a->shape, input_ksize, new_strides, global_pooling, adaptive, padding_algorithm, new_data_format);
  // Update kernel_size
  auto new_ksize          = UpdatePool2dKernelSize(a->shape, input_ksize, global_pooling, new_data_format);
  attrs["kernel_size"]    = new_ksize;
  attrs["padding_size"]   = new_paddings;
  attrs["adaptive"]       = adaptive;
  attrs["global_pooling"] = global_pooling;
  return CustomInstr("pool2d", {a}, attrs).front();
}

Variable NetBuilder::Pool2dGrad(const Variable& x,
                                const Variable& y,
                                const Variable& dy,
                                const std::string& pooling_type,
                                const std::vector<int>& ksize,
                                const std::vector<int>& strides,
                                const std::vector<int>& paddings,
                                bool ceil_mode,
                                bool exclusive,
                                bool global_pooling,
                                const std::string& data_format,
                                bool adaptive,
                                const std::string& padding_algorithm) {
  // Transform pool_type
  std::string pool_type;
  std::transform(pooling_type.begin(), pooling_type.end(), std::back_inserter(pool_type), [](unsigned char c) {
    return std::tolower(c);
  });
  CHECK(pool_type == "avg" || pool_type == "max") << "Pool_type must be avg or max, but got: " << pool_type;
  // Transform ksize
  std::vector<int> input_ksize{ksize};
  if (input_ksize.size() == 1) {
    input_ksize.insert(input_ksize.end(), ksize.begin(), ksize.end());
  }
  CHECK_EQ(input_ksize.size(), 2) << "Kernel_size length must be 1 or 2, but got: " << ksize.size();
  // Transform stride
  std::vector<int> new_strides{strides};
  if (new_strides.size() == 1) {
    new_strides.insert(new_strides.end(), strides.begin(), strides.end());
  }
  CHECK_EQ(new_strides.size(), 2) << "Stride length must be 1 or 2, but got: " << strides.size();
  CHECK(new_strides[0] > 0 && new_strides[1] > 0) << "the value of kernel size for pool2d should greater than 0.";
  // Transform data_format
  std::string new_data_format{data_format};
  if (new_data_format == "AnyLayout") {
    new_data_format.assign("NCHW");
  }
  CHECK(new_data_format == "NCHW" || new_data_format == "NHWC")
      << "Data_format must be AnyLayout/NCHW/NHWC, but got: " << data_format;
  // Check padding_algorithm
  CHECK(padding_algorithm == "EXPLICIT" || padding_algorithm == "SAME" || padding_algorithm == "VALID")
      << "Padding_algorithm must be EXPLICIT/SAME/VALID, but got: " << padding_algorithm;
  // In avg_pool2d, if global_pooling = false, adaptive = true and ksize is [1, 1], we turn off adaptive and use global
  // pooling instead
  if (pooling_type == "avg" && !global_pooling && adaptive && input_ksize[0] == 1 && input_ksize[1] == 1) {
    VLOG(4) << "In avg_pool2d, got global_pooling = false, adaptive = true, ksize = [1, 1], turn off adaptive and "
               "trans to global_pooling";
    adaptive       = false;
    global_pooling = true;
  }
  // Transform paddings
  auto new_paddings = UpdatePool2dPaddings(
      paddings, x->shape, input_ksize, new_strides, global_pooling, adaptive, padding_algorithm, new_data_format);
  // Update kernel_size
  auto new_ksize = UpdatePool2dKernelSize(x->shape, input_ksize, global_pooling, new_data_format);
  return CustomInstr("pool2d_grad",
                     {x, y, dy},
                     {{"pool_type", pool_type},
                      {"kernel_size", new_ksize},
                      {"stride_size", new_strides},
                      {"padding_size", new_paddings},
                      {"ceil_mode", ceil_mode},
                      {"exclusive", exclusive},
                      {"global_pooling", global_pooling},
                      {"data_format", new_data_format},
                      {"adaptive", adaptive},
                      {"padding_algorithm", padding_algorithm}})
      .front();
}

Variable NetBuilder::Repeat(const Variable& x, int repeats, int axis) {
  return CustomInstr("repeat", {x}, {{"repeats", repeats}, {"axis", axis}}).front();
}

Variable NetBuilder::Resize(const Variable& x, const std::vector<int>& out_shape, const std::string& mode) {
  return CustomInstr("resize", {x}, {{"out_shape", out_shape}, {"mode", mode}}).front();
}

std::vector<Variable> NetBuilder::BatchNorm(const Variable& a,
                                            const Variable& scale,
                                            const Variable& bias,
                                            const Variable& mean,
                                            const Variable& variance,
                                            float epsilon,
                                            float momentum,
                                            const std::string& data_layout,
                                            bool is_test) {
  std::string op_type = is_test ? "batch_norm" : "batch_norm_train";
  return CustomInstr(op_type,
                     {a, scale, bias, mean, variance},
                     {{"epsilon", epsilon}, {"momentum", momentum}, {"data_layout", data_layout}});
}

// batch norm grad, output(grad_x, grad_scale, grad_bias)
std::vector<Variable> NetBuilder::BatchNormGrad(const Variable& dy,
                                                const Variable& x,
                                                const Variable& scale,
                                                const Variable& save_mean,
                                                const Variable& save_variance,
                                                const float epsilon,
                                                const std::string& data_layout) {
  return CustomInstr("batch_norm_grad",
                     {dy, x, scale, save_mean, save_variance},
                     {{"epsilon", epsilon}, {"data_layout", data_layout}});
}

Variable NetBuilder::Scale(const Variable& a, float scale, float bias, bool bias_after_scale) {
  return CustomInstr("scale", {a}, {{"scale", scale}, {"bias", bias}, {"bias_after_scale", bias_after_scale}}).front();
}

Variable NetBuilder::Softmax(const Variable& a,
                             const std::vector<int>& axes,
                             const std::string& mode,
                             const std::string& data_format) {
  return CustomInstr("softmax", {a}, {{"axes", axes}, {"mode", mode}, {"data_format", data_format}}).front();
}

Variable NetBuilder::DropoutInfer(const Variable& a, float dropout_prob, const std::string& dropout_implementation) {
  return CustomInstr(
             "dropout_infer", {a}, {{"dropout_prob", dropout_prob}, {"dropout_implementation", dropout_implementation}})
      .front();
}

Variable NetBuilder::Sum(const std::vector<Variable>& inputs) {
  return CustomInstr("sum", inputs, {}).front();
  ;
}

Variable NetBuilder::Arange(const float start, const float stop, const float step, const std::string& dtype) {
  return CustomInstr("arange", {}, {{"start", start}, {"stop", stop}, {"step", step}, {"dtype", dtype}}).front();
}

Variable NetBuilder::Flip(const Variable& operand, const std::vector<int>& axes) {
  return CustomInstr("reverse", {operand}, {{"axis", utils::GetPositiveAxes(axes, operand->shape.size())}}).front();
}

Variable NetBuilder::Matmul(const Variable& x, const Variable& y, bool trans_x, bool trans_y, float alpha) {
  return CustomInstr("matmul", {x, y}, {{"trans_a", trans_x}, {"trans_b", trans_y}, {"alpha", alpha}}).front();
  ;
}

Variable NetBuilder::GaussianRandom(
    const std::vector<int>& shape, float mean, float std, int seed, const std::string& dtype) {
  return CustomInstr(
             "gaussian_random", {}, {{"shape", shape}, {"mean", mean}, {"std", std}, {"seed", seed}, {"dtype", dtype}})
      .front();
}

Variable NetBuilder::UniformRandom(const std::vector<int>& shape,
                                   float min,
                                   float max,
                                   int seed,
                                   const std::string& dtype,
                                   int diag_num,
                                   int diag_step,
                                   float diag_val) {
  auto uniform_out =
      CustomInstr(
          "uniform_random", {}, {{"shape", shape}, {"min", min}, {"max", max}, {"seed", seed}, {"dtype", dtype}})
          .front();
  if (min == 0.0f && max == 1.0f) {
    return uniform_out;
  }
  auto uniform_range   = FillConstant(shape, max - min, UniqName("uniform_range"), dtype);
  auto uniform_mul_out = Multiply(uniform_out, uniform_range);
  auto uniform_min     = FillConstant(shape, min, UniqName("uniform_min"), dtype);
  auto uniform_res     = Add(uniform_mul_out, uniform_min);
  if (diag_num > 0) {
    int numel = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
    CHECK_GT(numel, (diag_num - 1) * (diag_step + 1)) << "(diag_num - 1) * (diag_step + 1) should smaller than numel!";
    auto diag_index =
        Arange(0.0f, static_cast<float>(diag_num * (diag_step + 1)), static_cast<float>(diag_step + 1), "int32");
    auto diag_val_tensor = FillConstant(diag_index->shape, diag_val, "diag_val", dtype);
    auto uniform_flatten = Reshape(uniform_res, {-1});
    auto uniform_scatter = ScatterAssign(uniform_flatten, diag_val_tensor, diag_index);
    uniform_res          = Reshape(uniform_scatter, shape);
  }
  return uniform_res;
}

Variable NetBuilder::RandInt(const std::vector<int>& shape, int min, int max, int seed, const std::string& dtype) {
  CHECK_GT(max, min) << "max: " << max << "should greater than"
                     << "min: " << min;
  auto randint_out   = CustomInstr("randint", {}, {{"shape", shape}, {"seed", seed}, {"dtype", dtype}}).front();
  randint_out        = Cast(randint_out, dtype);
  auto randint_range = FillConstant(shape, max - min, UniqName("randint_range"), dtype);
  auto randint_mod   = Mod(randint_out, randint_range);
  auto randint_min   = FillConstant(shape, min, UniqName("randint_min"), dtype);
  auto randint_ret   = Add(randint_mod, randint_min);
  return randint_ret;
}

Variable NetBuilder::Cholesky(const Variable& x, bool upper) {
  auto cholesky_out = CustomInstr("cholesky", {x}, {{"upper", upper}}).front();
  // Set upper/lower triangle of matrices to 0
  auto x_ndim = x->shape.size();
  CHECK_GE(x_ndim, 2) << "The input matrix x shape size should >= 2! Please check again.";
  CHECK_EQ(x->shape[x_ndim - 1], x->shape[x_ndim - 2])
      << "The input matrix x's last 2 dimensions must be the same! Please check again.";
  int m          = x->shape[x_ndim - 1];
  auto m_tensor  = FillConstant({m * m}, m);
  auto index     = Arange(0.0f, static_cast<float>(m * m), 1.0f, "int32");
  auto index_row = Mod(index, m_tensor);
  auto index_col = FloorDivide(index, m_tensor);
  auto mask      = upper ? GreaterEqual(index_row, index_col) : LessEqual(index_row, index_col);
  auto mask_mat  = Reshape(mask, {m, m});
  auto mask_full = BroadcastTo(mask_mat, x->shape);
  auto zeros     = FillConstant(x->shape, 0.0f, "zeros", common::Type2Str(x->type));
  auto out       = Select(mask_full, cholesky_out, zeros);
  return out;
}

Variable NetBuilder::TriangularSolve(
    const Variable& input1, const Variable& input2, bool left_side, bool upper, bool transpose_a, bool unit_diagonal) {
  // broadcast
  std::vector<Variable> inputs{input1, input2};
  {
    auto a_ndim = input1->shape.size();
    auto b_ndim = input2->shape.size();
    CHECK_GE(a_ndim, 2) << "The input matrix A shape size should >= 2! Please check again.";
    CHECK_GE(b_ndim, 2) << "The input matrix B shape size should >= 2! Please check again.";
    std::vector<int> input1_shape_cut(input1->shape.begin(), input1->shape.end() - 2);
    std::vector<int> input2_shape_cut(input2->shape.begin(), input2->shape.end() - 2);
    std::vector<int> common_shape;
    hlir::pe::GetBroadcastOutShape(input1_shape_cut, input2_shape_cut, &common_shape);

    // broadcast input1
    std::vector<int> input1_shape(common_shape.begin(), common_shape.end());
    input1_shape.push_back(input1->shape[a_ndim - 2]);
    input1_shape.push_back(input1->shape[a_ndim - 1]);
    inputs[0] = BroadcastTo(input1, input1_shape);

    // broadcast input2
    std::vector<int> input2_shape(common_shape.begin(), common_shape.end());
    input2_shape.push_back(input2->shape[b_ndim - 2]);
    input2_shape.push_back(input2->shape[b_ndim - 1]);
    inputs[1] = BroadcastTo(input2, input2_shape);
  }

  return CustomInstr("triangular_solve",
                     inputs,
                     {{"left_side", left_side},
                      {"upper", upper},
                      {"transpose_a", transpose_a},
                      {"unit_diagonal", unit_diagonal}})
      .front();
}

std::vector<Variable> NetBuilder::TopK(const Variable& x, int k, int axis, bool largest) {
  return CustomInstr("top_k", {x}, {{"k", k}, {"axis", axis}, {"largest", largest}});
}

}  // namespace frontend
}  // namespace cinn