group_norm_op.cc 10.1 KB
Newer Older
D
Dun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/group_norm_op.h"
L
liuwei1031 已提交
16
#include <memory>
17
#include <string>
L
liuwei1031 已提交
18
#include <unordered_map>
19
#include <vector>
D
Dun 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class GroupNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
33 34 35 36 37 38
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "GroupNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "GroupNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Mean"), "Output", "Mean", "GroupNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Variance"), "Output", "Variance",
                   "GroupNorm");

D
Dun 已提交
39
    auto x_dim = ctx->GetInputDim("X");
40 41 42 43
    const std::string data_layout_str =
        ctx->Attrs().Get<std::string>("data_layout");
    const framework::DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
44 45
    const int64_t channel_num =
        (data_layout == DataLayout::kNCHW ? x_dim[1] : x_dim[x_dim.size() - 1]);
D
Dun 已提交
46 47 48 49
    auto batch_size = x_dim[0];
    auto groups = ctx->Attrs().Get<int>("groups");
    PADDLE_ENFORCE_LE(
        groups, channel_num,
50 51 52 53 54 55
        platform::errors::InvalidArgument(
            "The Attr(groups) of Op(group_norm) must be less than or "
            "equal to the number of channels. But received: groups "
            "is [%s], channels is [%s], the Attr(data_layout) "
            "is [%s]. The error may come from wrong data_layout setting.",
            groups, channel_num, data_layout_str));
56 57
    PADDLE_ENFORCE_GE(
        groups, 1,
58 59 60 61
        platform::errors::InvalidArgument(
            "The Attr(groups) of Op(group_norm) must be "
            "greater than or equal to 1. But received: groups is [%s].",
            groups));
D
Dun 已提交
62 63

    if (ctx->HasInput("Scale")) {
64 65
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Scale").size(), 1UL,
66 67 68 69
          platform::errors::InvalidArgument(
              "The Input(Scale) of Op(group_norm) should be 1-D Tensor. "
              "But received: %u-D Tensor, the shape of Input(Scale) is [%s].",
              ctx->GetInputDim("Scale").size(), ctx->GetInputDim("Scale")));
70 71
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Scale")[0], channel_num,
72 73 74 75 76 77 78
          platform::errors::InvalidArgument(
              "The Input(Scale)'s first dimension size of Op(group_norm) must "
              "be equal to the number of channels. But received: the "
              "Input(Scale)'s first dimension size is [%s], the channels is "
              "[%s], the Attr(data_layout) is [%s]. The error may come "
              "from wrong data_layout setting.",
              ctx->GetInputDim("Scale")[0], channel_num, data_layout_str));
D
Dun 已提交
79 80
    }
    if (ctx->HasInput("Bias")) {
81 82
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Bias").size(), 1UL,
83 84 85 86
          platform::errors::InvalidArgument(
              "The Input(Bias) of Op(group_norm) should be 1-D Tensor. "
              "But received: %u-D Tensor, the shape of Input(Bias) is [%s].",
              ctx->GetInputDim("Bias").size(), ctx->GetInputDim("Bias")));
87 88
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Bias")[0], channel_num,
89 90 91 92 93 94 95
          platform::errors::InvalidArgument(
              "The Input(Bias)'s first dimension size of "
              "Op(group_norm) must be equal to the number of channels. "
              "But received: the Input(Bias)'s first dimension size is [%s], "
              "the channels is [%s], the Attr(data_layout) is [%s]. The "
              "error may come from wrong data_layout setting.",
              ctx->GetInputDim("Bias")[0], channel_num, data_layout_str));
D
Dun 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    }

    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
    ctx->SetOutputDim("Mean", {batch_size, groups});
    ctx->SetOutputDim("Variance", {batch_size, groups});
    ctx->ShareLoD("X", "Y");
  }
};

class GroupNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor.");
    AddInput("Scale",
             "Scale is a 1-dimensional tensor of size C"
             "that is applied to the output.")
        .AsDispensable();
    AddInput("Bias",
             "Bias is a 1-dimensional tensor of size C "
             "that is applied to the output")
        .AsDispensable();
    AddOutput("Y", "Result after normalization.");
    AddOutput("Mean", "Mean of each group.").AsIntermediate();
    AddOutput("Variance", "Variance of each group.").AsIntermediate();

    AddAttr<float>("epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
125 126 127 128 129
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 1.0f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(GroupNorm) should be between"
                                "0.0 and 1.0f, But received [%s].",
                                epsilon));
D
Dun 已提交
130 131 132
        });
    AddAttr<int>("groups", "The number of groups that divided from channels.")
        .AddCustomChecker([](const int &groups) {
133 134 135 136 137 138
          PADDLE_ENFORCE_GT(
              groups, 0,
              platform::errors::InvalidArgument(
                  "'groups' in Op(GroupNorm) should be greater than zero,"
                  "But received [%s].",
                  groups));
D
Dun 已提交
139
        });
140 141 142
    AddAttr<std::string>("data_layout",
                         "An optional string from: \"NHWC\", \"NCHW\". ")
        .SetDefault("NCHW");
D
Dun 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156
    AddComment(R"DOC(
Group Normalization

Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_
)DOC");
  }
};

class GroupNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
157 158 159 160 161
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "GroupNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance",
                   "GroupNormGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   framework::GradVarName("Y"), "GroupNormGrad");
D
Dun 已提交
162 163 164

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
165
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Y"));
D
Dun 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
181 182 183 184

    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument(
                 "Input(Y@GRAD) of GroupNormGradOp should not be null"));
D
Dun 已提交
185 186 187 188 189 190
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
191 192 193
    PADDLE_ENFORCE_NOT_NULL(
        t, platform::errors::InvalidArgument(
               "Input(Y@GRAD) Tensor of GroupNormGradOp should not be null"));
Y
Yu Yang 已提交
194
    return framework::OpKernelType(t->type(), ctx.GetPlace());
D
Dun 已提交
195 196 197
  }
};

H
hong 已提交
198 199
template <typename T>
class GroupNormGradMaker : public framework::SingleGradOpMaker<T> {
200
 public:
H
hong 已提交
201
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
202

203
  void Apply(GradOpPtr<T> op) const override {
204
    op->SetType("group_norm_grad");
H
hong 已提交
205 206 207 208 209
    op->SetInput("Scale", this->Input("Scale"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetInput("Y", this->Output("Y"));
    op->SetInput("Variance", this->Output("Variance"));
210

H
hong 已提交
211 212 213
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
214

H
hong 已提交
215
    op->SetAttrMap(this->Attrs());
216 217 218
  }
};

219 220 221 222
DECLARE_INPLACE_OP_INFERER(GroupNormInplaceInToOut, {"X", "Y"});
DECLARE_INPLACE_OP_INFERER(GroupNormGradInplaceInToOut,
                           {framework::GradVarName("Y"),
                            framework::GradVarName("X")});
D
Dun 已提交
223 224 225 226

class GroupNormOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
227
  std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
D
Dun 已提交
228
      const override {
229 230
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Y"}};
    return m;
D
Dun 已提交
231 232 233
  }
};

D
Dun 已提交
234 235 236 237 238
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(group_norm, ops::GroupNormOp, ops::GroupNormOpMaker,
H
hong 已提交
239 240 241
                  ops::GroupNormOpInferVarType,
                  ops::GroupNormGradMaker<paddle::framework::OpDesc>,
                  ops::GroupNormGradMaker<paddle::imperative::OpBase>,
D
Dun 已提交
242 243 244
                  ops::GroupNormInplaceInToOut);
REGISTER_OPERATOR(group_norm_grad, ops::GroupNormGradOp,
                  ops::GroupNormGradInplaceInToOut);
D
Dun 已提交
245 246 247 248 249 250 251
REGISTER_OP_CPU_KERNEL(
    group_norm, ops::GroupNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GroupNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    group_norm_grad,
    ops::GroupNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GroupNormGradKernel<paddle::platform::CPUDeviceContext, double>);