cudnn_lstm_op.cu.cc 21.2 KB
Newer Older
P
phlrain 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuhongyu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/generator.h"
C
chengduozh 已提交
16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
18
#include "paddle/fluid/operators/utils.h"
19 20 21 22 23 24
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/operators/cudnn_lstm_cache.h"
#endif
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/operators/miopen_lstm_cache.h"
#endif
W
wanghuancoder 已提交
25 26 27 28 29 30 31

namespace paddle {
namespace platform {
class CUDADeviceContext;
struct CUDAPlace;
}  // namespace platform
}  // namespace paddle
L
liuhongyu 已提交
32 33 34 35 36 37 38

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

G
GaoWei8 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
template <typename T, typename Type>
bool is_continuous(const Type &weight_list) {
  bool continuous = true;
  for (size_t i = 0; i < weight_list.size() - 1; ++i) {
    auto *in_data = weight_list[i]->template data<T>();
    auto *in_after_data = weight_list[i + 1]->template data<T>();
    auto in_size = weight_list[i]->numel();
    bool temp = in_data + in_size == in_after_data;
    continuous = continuous && temp;
  }
  return continuous;
}

int size_sum(const std::vector<const Tensor *> &weight_list) {
  int size = 0;
  for (size_t i = 0; i < weight_list.size(); ++i) {
    auto in_size = weight_list[i]->numel();
    size += in_size;
  }
  return size;
}

template <typename T>
62
void weight_to_tensor(const platform::Place &place, gpuStream_t stream,
G
GaoWei8 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
                      const std::vector<const Tensor *> &weight_list,
                      Tensor *weight) {
  auto weight_data = weight->data<T>();
  int weight_offset = 0;
  for (size_t i = 0; i < weight_list.size(); ++i) {
    const T *in_data = weight_list[i]->data<T>();
    auto in_size = weight_list[i]->numel();

    memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, weight->place()),
                 weight_data + weight_offset,
                 BOOST_GET_CONST(platform::CUDAPlace, weight_list[i]->place()),
                 in_data, in_size * sizeof(T), stream);
    weight_offset += in_size;
  }
}

template <typename T>
80
void weight_to_tensor_list(const platform::Place &place, gpuStream_t stream,
G
GaoWei8 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
                           std::vector<Tensor *> *weight_grad,
                           const std::vector<const Tensor *> &weight_input,
                           const Tensor *weight) {
  int weight_offset = 0;
  auto *weight_data = weight->data<T>();
  for (size_t i = 0; i < weight_input.size(); ++i) {
    auto in_size = weight_input[i]->numel();
    T *weight_grad_data = (*weight_grad)[i]->mutable_data<T>(place);
    const T *src = weight_data + weight_offset;

    memory::Copy(
        BOOST_GET_CONST(platform::CUDAPlace, (*weight_grad)[i]->place()),
        weight_grad_data, BOOST_GET_CONST(platform::CUDAPlace, weight->place()),
        src, in_size * sizeof(T), stream);
    weight_offset += in_size;
  }
}

99
template <typename T>
100 101 102
#ifdef PADDLE_WITH_HIP
void LSTMInferece(const bool &has_seq_length, const miopenHandle_t &handle,
#else
103
void LSTMInferece(const bool &has_seq_length, const cudnnHandle_t &handle,
104
#endif
105 106 107 108 109 110
                  const int &seq_length, ScopedRNNBase *rnn, const T *x_data,
                  const T *init_h_data, const T *init_c_data, const T *w_data,
                  T *out_data, T *last_h_data, T *last_c_data,
                  framework::Tensor *workspace_data,
                  const size_t &workspace_size) {
  if (!has_seq_length) {
111 112 113
// for inference
// This interface is used when the input/output is unpadded.
#ifdef PADDLE_WITH_HIP
114
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenRNNForwardInference(
115 116 117 118 119 120
        handle, rnn->rnn_desc(), seq_length, rnn->x_descs(), x_data,
        rnn->init_h_desc(), init_h_data, rnn->init_c_desc(), init_c_data,
        rnn->weight_desc(), w_data, rnn->y_descs(), out_data,
        rnn->last_h_desc(), last_h_data, rnn->last_c_desc(), last_c_data,
        workspace_data->data<uint8_t>(), workspace_size));
#else
121
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnRNNForwardInference(
122 123 124 125 126
        handle, rnn->rnn_desc(), seq_length, rnn->x_descs(), x_data,
        rnn->init_h_desc(), init_h_data, rnn->init_c_desc(), init_c_data,
        rnn->weight_desc(), w_data, rnn->y_descs(), out_data,
        rnn->last_h_desc(), last_h_data, rnn->last_c_desc(), last_c_data,
        workspace_data->data<uint8_t>(), workspace_size));
127
#endif
128
  } else {
129
#if !defined(PADDLE_WITH_HIP) && CUDNN_VERSION >= 7201
130 131
    // for inference
    // This interface is used when the input/output is padded.
132
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnRNNForwardInferenceEx(
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        handle, rnn->rnn_desc(), rnn->x_seq_desc(), x_data, rnn->init_h_desc(),
        init_h_data, rnn->init_c_desc(), init_c_data, rnn->weight_desc(),
        w_data, rnn->y_seq_desc(), out_data, rnn->last_h_desc(), last_h_data,
        rnn->last_c_desc(), last_c_data, nullptr, nullptr, nullptr, nullptr,
        nullptr, nullptr, nullptr, nullptr, workspace_data->data<uint8_t>(),
        workspace_size));
#else
    // CUDNN VERSION has to >=7.2.1
    PADDLE_THROW(platform::errors::Unavailable(
        "The padded input is supported by "
        "cudnnRNNForwardInferenceEx, but it only works when "
        "the version of cudnn is larger than 7.2.1"));
#endif
  }
}

C
chengduozh 已提交
149
template <typename T>
L
liuhongyu 已提交
150 151 152 153 154 155 156 157
class CudnnLSTMGPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const Tensor *x = ctx.Input<Tensor>("Input");
    const Tensor *init_h = ctx.Input<Tensor>("InitH");
    const Tensor *init_c = ctx.Input<Tensor>("InitC");

    Tensor *out = ctx.Output<Tensor>("Out");
G
GaoWei8 已提交
158 159 160 161
    Tensor *last_h = ctx.Output<Tensor>("LastH");
    Tensor *last_c = ctx.Output<Tensor>("LastC");
    Tensor *reserve = ctx.Output<Tensor>("Reserve");
    Tensor *state_out = ctx.Output<Tensor>("StateOut");
L
liuhongyu 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175

    const T *x_data = x->data<T>();
    const T *init_h_data = init_h->data<T>();
    const T *init_c_data = init_c->data<T>();

    T *out_data = out->mutable_data<T>(ctx.GetPlace());
    T *last_h_data = last_h->mutable_data<T>(ctx.GetPlace());
    T *last_c_data = last_c->mutable_data<T>(ctx.GetPlace());

    float dropout_prob = ctx.Attr<float>("dropout_prob");
    bool is_bidirec = ctx.Attr<bool>("is_bidirec");
    int hidden_size = ctx.Attr<int>("hidden_size");
    int num_layers = ctx.Attr<int>("num_layers");
    bool is_test = ctx.Attr<bool>("is_test");
G
GaoWei8 已提交
176
    int seed = ctx.Attr<int>("seed");
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    if (!is_test) {
      int device_id =
          BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()).GetDeviceId();
      auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);
      if (gen_cuda->GetIsInitPy() && seed == 0) {
        // If perform `manual_seed` in python and inner seed is not specified
        // (equals 0), use global generator generated seed.
        seed = static_cast<int>(gen_cuda->Random64());
      } else if (seed == 0) {
        // use random generated seed
        std::random_device rd;
        seed = rd();
      }  // else use `ctx.Attr<int>("seed")` specified seed
    }

193 194 195 196 197 198
    bool has_seq_length = ctx.HasInput("SequenceLength");
    std::vector<int> SequenceLength;
    if (has_seq_length) {
      auto *sequence_length = ctx.Input<Tensor>("SequenceLength");
      SequenceLength = operators::GetDataFromTensor<int>(sequence_length);
    }
L
liuhongyu 已提交
199 200 201 202

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();

G
GaoWei8 已提交
203 204 205 206
    int seq_length = x->dims()[0];
    int batch_size = x->dims()[1];
    int input_size = x->dims()[2];
    bool state_initialized = state_out->IsInitialized() ? true : false;
G
GaoWei8 已提交
207

G
GaoWei8 已提交
208
    size_t workspace_size;
G
GaoWei8 已提交
209
    size_t reserve_size;
G
GaoWei8 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    Tensor weight_whole;
    T *w_data = nullptr;
    int weight_numel;
    bool w_initialized = false;
    auto place = ctx.GetPlace();
    auto stream = reinterpret_cast<const platform::CUDADeviceContext &>(
                      ctx.device_context())
                      .stream();
    if (is_test && ctx.HasInput("W")) {
      auto *W = ctx.Input<Tensor>("W");
      w_initialized = W->IsInitialized() ? true : false;
      weight_numel = W->numel();
    }
    if (!w_initialized) {
      auto weight_list = ctx.MultiInput<framework::Tensor>("WeightList");
      bool continuous =
          is_continuous<T, std::vector<const Tensor *>>(weight_list);
      weight_numel = size_sum(weight_list);

      if (!continuous) {
        LOG_FIRST_N(WARNING, 2)
231 232 233
            << "If the memory space of the Input WeightList is not continuous, "
               "less efficient calculation will be called. Please call "
               "flatten_parameters() to make the input memory continuous.";
G
GaoWei8 已提交
234 235 236
        weight_whole.mutable_data<T>({weight_numel}, place);
        weight_to_tensor<T>(place, stream, weight_list, &weight_whole);
        w_data = weight_whole.data<T>();
237 238 239 240 241 242 243 244 245 246 247 248 249
        if (is_test) {  // maybe also reset small weights' ptr for training
          int offset = 0;
          for (size_t i = 0; i < weight_list.size(); ++i) {
            size_t len = weight_list[i]->numel();
            auto dim = weight_list[i]->dims();
            const_cast<Tensor *>(weight_list[i])
                ->ShareDataWith(
                    weight_whole.Slice(static_cast<int64_t>(offset),
                                       static_cast<int64_t>(offset + len)))
                .Resize(dim);
            offset += len;
          }
        }
G
GaoWei8 已提交
250 251 252 253 254 255 256
      } else {
        w_data = const_cast<T *>(weight_list[0]->data<T>());
      }
    } else {
      auto *W = ctx.Input<Tensor>("W");
      w_data = const_cast<T *>(W->data<T>());
    }
G
GaoWei8 已提交
257

258 259 260 261
    ScopedRNNBase rnn(seq_length, batch_size, input_size, hidden_size,
                      num_layers, dropout_prob, seed, weight_numel,
                      state_initialized, is_bidirec);
    rnn.Create<T>(handle, ctx.GetPlace(), SequenceLength, &workspace_size,
G
GaoWei8 已提交
262 263 264
                  &reserve_size, state_out);

    framework::Tensor workspace_data_;
265 266
    workspace_data_.mutable_data<uint8_t>(
        {static_cast<int64_t>(workspace_size)}, ctx.GetPlace());
G
GaoWei8 已提交
267 268 269

    auto *reserve_data = reserve->mutable_data<uint8_t>(
        {static_cast<int64_t>(reserve_size)}, ctx.GetPlace());
L
liuhongyu 已提交
270 271

    if (is_test) {
272 273 274
      LSTMInferece<T>(has_seq_length, handle, seq_length, &rnn, x_data,
                      init_h_data, init_c_data, w_data, out_data, last_h_data,
                      last_c_data, &workspace_data_, workspace_size);
L
liuhongyu 已提交
275
    } else {
276
      if (!has_seq_length) {
277 278 279
// for train
// This interface is used when the input/output is unpadded.
#ifdef PADDLE_WITH_HIP
280
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenRNNForwardTraining(
281 282 283 284 285 286 287
            handle, rnn.rnn_desc(), seq_length, rnn.x_descs(), x_data,
            rnn.init_h_desc(), init_h_data, rnn.init_c_desc(), init_c_data,
            rnn.weight_desc(), w_data, rnn.y_descs(), out_data,
            rnn.last_h_desc(), last_h_data, rnn.last_c_desc(), last_c_data,
            workspace_data_.data<uint8_t>(), workspace_size, reserve_data,
            reserve_size));
#else
288
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnRNNForwardTraining(
289 290 291 292
            handle, rnn.rnn_desc(), seq_length, rnn.x_descs(), x_data,
            rnn.init_h_desc(), init_h_data, rnn.init_c_desc(), init_c_data,
            rnn.weight_desc(), w_data, rnn.y_descs(), out_data,
            rnn.last_h_desc(), last_h_data, rnn.last_c_desc(), last_c_data,
G
GaoWei8 已提交
293 294
            workspace_data_.data<uint8_t>(), workspace_size, reserve_data,
            reserve_size));
295
#endif
G
GaoWei8 已提交
296
      } else {
297
#if !defined(PADDLE_WITH_HIP) && CUDNN_VERSION >= 7201
G
GaoWei8 已提交
298 299
        // for train
        // This interface is used when the input/output is padded.
300 301 302 303 304 305 306
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnRNNForwardTrainingEx(
            handle, rnn.rnn_desc(), rnn.x_seq_desc(), x_data, rnn.init_h_desc(),
            init_h_data, rnn.init_c_desc(), init_c_data, rnn.weight_desc(),
            w_data, rnn.y_seq_desc(), out_data, rnn.last_h_desc(), last_h_data,
            rnn.last_c_desc(), last_c_data, nullptr, nullptr, nullptr, nullptr,
            nullptr, nullptr, nullptr, nullptr, workspace_data_.data<uint8_t>(),
            workspace_size, reserve_data, reserve_size));
G
GaoWei8 已提交
307
#else
308 309 310 311
        PADDLE_THROW(platform::errors::Unavailable(
            "The padded input is supported by "
            "cudnnRNNForwardTrainingEx, but it only works when "
            "the version of cudnn is larger than 7.2.1"));
G
GaoWei8 已提交
312 313
#endif
      }
L
liuhongyu 已提交
314 315 316 317
    }
  }
};

C
chengduozh 已提交
318
template <typename T>
L
liuhongyu 已提交
319 320 321 322 323 324
class CudnnLSTMGPUGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *input = ctx.Input<Tensor>("Input");
    auto *init_h = ctx.Input<Tensor>("InitH");
    auto *init_c = ctx.Input<Tensor>("InitC");
G
GaoWei8 已提交
325 326
    auto *reserve = ctx.Input<Tensor>("Reserve");
    auto *state_out = ctx.Input<Tensor>("StateOut");
G
GaoWei8 已提交
327
    auto weight_list = ctx.MultiInput<Tensor>("WeightList");
G
GaoWei8 已提交
328

L
liuhongyu 已提交
329 330
    auto *out = ctx.Input<Tensor>("Out");
    auto *out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
G
GaoWei8 已提交
331 332
    auto *last_h_grad = ctx.Input<Tensor>(framework::GradVarName("LastH"));
    auto *last_c_grad = ctx.Input<Tensor>(framework::GradVarName("LastC"));
L
liuhongyu 已提交
333 334 335 336

    auto *in_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto *init_h_grad = ctx.Output<Tensor>(framework::GradVarName("InitH"));
    auto *init_c_grad = ctx.Output<Tensor>(framework::GradVarName("InitC"));
G
GaoWei8 已提交
337 338
    auto weight_grad_list = ctx.MultiOutput<framework::Tensor>(
        framework::GradVarName("WeightList"));
L
liuhongyu 已提交
339 340 341 342 343 344 345 346

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();

    auto input_dims = input->dims();
    auto init_h_dims = init_h->dims();
    auto init_c_dims = init_c->dims();

G
GaoWei8 已提交
347 348 349 350 351 352
    auto *init_h_data = init_h->data<T>();
    auto *init_c_data = init_c->data<T>();
    auto *out_data = out->data<T>();
    auto *out_grad_data = out_grad->data<T>();
    auto *last_h_grad_data = last_h_grad->data<T>();
    auto *last_c_grad_data = last_c_grad->data<T>();
L
liuhongyu 已提交
353

G
GaoWei8 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    auto place = ctx.GetPlace();
    int weight_numel = size_sum(weight_list);
    bool continuous =
        is_continuous<T, std::vector<const Tensor *>>(weight_list);

    auto stream = reinterpret_cast<const platform::CUDADeviceContext &>(
                      ctx.device_context())
                      .stream();
    Tensor weight_whole;
    T *weight_data = nullptr;

    if (!continuous) {
      weight_whole.mutable_data<T>({weight_numel}, place);
      weight_to_tensor<T>(place, stream, weight_list, &weight_whole);
      weight_data = weight_whole.data<T>();
    } else {
      weight_data = const_cast<T *>(weight_list[0]->data<T>());
    }

    Tensor weight_grad;
G
GaoWei8 已提交
374
    math::SetConstant<paddle::platform::CUDADeviceContext, T> zero;
G
GaoWei8 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388
    weight_grad.mutable_data<T>({weight_numel}, ctx.GetPlace());
    zero(dev_ctx, &weight_grad, static_cast<T>(0.0));
    T *weight_grad_data = weight_grad.data<T>();

    int offset = 0;
    for (size_t i = 0; i < weight_grad_list.size(); ++i) {
      size_t len = weight_grad_list[i]->numel();
      auto dim = weight_grad_list[i]->dims();
      weight_grad_list[i]
          ->ShareDataWith(weight_grad.Slice(static_cast<int64_t>(offset),
                                            static_cast<int64_t>(offset + len)))
          .Resize(dim);
      offset += len;
    }
L
liuhongyu 已提交
389

G
GaoWei8 已提交
390 391
    in_grad->mutable_data<T>(input_dims, ctx.GetPlace());
    auto *in_grad_data = in_grad->data<T>();
L
liuhongyu 已提交
392

G
GaoWei8 已提交
393 394
    if (init_h_grad) init_h_grad->mutable_data<T>(init_h_dims, ctx.GetPlace());
    auto *init_h_grad_data = init_h_grad ? init_h_grad->data<T>() : nullptr;
L
liuhongyu 已提交
395

G
GaoWei8 已提交
396 397
    if (init_c_grad) init_c_grad->mutable_data<T>(init_c_dims, ctx.GetPlace());
    auto *init_c_grad_data = init_c_grad ? init_c_grad->data<T>() : nullptr;
L
liuhongyu 已提交
398

G
GaoWei8 已提交
399 400 401 402 403
    float dropout_prob = ctx.Attr<float>("dropout_prob");
    bool is_bidirec = ctx.Attr<bool>("is_bidirec");
    int hidden_size = ctx.Attr<int>("hidden_size");
    int num_layers = ctx.Attr<int>("num_layers");
    int seed = ctx.Attr<int>("seed");
404 405 406 407 408 409 410

    bool has_seq_length = ctx.HasInput("SequenceLength");
    std::vector<int> SequenceLength;
    if (has_seq_length) {
      auto *sequence_length = ctx.Input<Tensor>("SequenceLength");
      SequenceLength = operators::GetDataFromTensor<int>(sequence_length);
    }
G
GaoWei8 已提交
411

G
GaoWei8 已提交
412 413 414
    int seq_length = input_dims[0];
    int batch_size = input->dims()[1];
    int input_size = input->dims()[2];
G
GaoWei8 已提交
415

G
GaoWei8 已提交
416
    size_t workspace_size;
G
GaoWei8 已提交
417
    size_t reserve_size;
G
GaoWei8 已提交
418

419 420 421
    ScopedRNNBase rnn(seq_length, batch_size, input_size, hidden_size,
                      num_layers, dropout_prob, seed, weight_numel, true,
                      is_bidirec);
G
GaoWei8 已提交
422

423
    rnn.Create<T>(handle, ctx.GetPlace(), SequenceLength, &workspace_size,
G
GaoWei8 已提交
424 425 426
                  &reserve_size, const_cast<Tensor *>(state_out));

    framework::Tensor workspace_data_;
427 428
    workspace_data_.mutable_data<uint8_t>(
        {static_cast<int64_t>(workspace_size)}, ctx.GetPlace());
G
GaoWei8 已提交
429
    const uint8_t *reserve_data = reserve->data<uint8_t>();
L
liuhongyu 已提交
430

431
    if (!has_seq_length) {
432 433
// This interface is used when the input/output is unpadded.
#ifdef PADDLE_WITH_HIP
434
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenRNNBackwardData(
435 436 437 438 439 440 441 442
          handle, rnn.rnn_desc(), seq_length, rnn.y_descs(), out_data,
          rnn.y_descs(), out_grad_data, rnn.last_h_desc(), last_h_grad_data,
          rnn.last_c_desc(), last_c_grad_data, rnn.weight_desc(), weight_data,
          rnn.init_h_desc(), init_h_data, rnn.init_c_desc(), init_c_data,
          rnn.x_descs(), in_grad_data, rnn.init_h_desc(), init_h_grad_data,
          rnn.init_c_desc(), init_c_grad_data, workspace_data_.data<uint8_t>(),
          workspace_size, const_cast<uint8_t *>(reserve_data), reserve_size));

443
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenRNNBackwardWeights(
444 445 446 447 448
          handle, rnn.rnn_desc(), seq_length, rnn.x_descs(), input->data<T>(),
          rnn.init_h_desc(), init_h->data<T>(), rnn.y_descs(), out->data<T>(),
          rnn.weight_desc(), weight_grad_data, workspace_data_.data<uint8_t>(),
          workspace_size, const_cast<uint8_t *>(reserve_data), reserve_size));
#else
449
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnRNNBackwardData(
450 451 452 453 454 455 456
          handle, rnn.rnn_desc(), seq_length, rnn.y_descs(), out_data,
          rnn.y_descs(), out_grad_data, rnn.last_h_desc(), last_h_grad_data,
          rnn.last_c_desc(), last_c_grad_data, rnn.weight_desc(), weight_data,
          rnn.init_h_desc(), init_h_data, rnn.init_c_desc(), init_c_data,
          rnn.x_descs(), in_grad_data, rnn.init_h_desc(), init_h_grad_data,
          rnn.init_c_desc(), init_c_grad_data, workspace_data_.data<uint8_t>(),
          workspace_size, const_cast<uint8_t *>(reserve_data), reserve_size));
G
GaoWei8 已提交
457

458
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnRNNBackwardWeights(
459 460 461
          handle, rnn.rnn_desc(), seq_length, rnn.x_descs(), input->data<T>(),
          rnn.init_h_desc(), init_h->data<T>(), rnn.y_descs(), out->data<T>(),
          workspace_data_.data<uint8_t>(), workspace_size, rnn.weight_desc(),
G
GaoWei8 已提交
462
          weight_grad_data, const_cast<uint8_t *>(reserve_data), reserve_size));
463
#endif
G
GaoWei8 已提交
464
    } else {
465
#if !defined(PADDLE_WITH_HIP) && CUDNN_VERSION >= 7201
G
GaoWei8 已提交
466 467
      // for train
      // This interface is used when the input/output is padded.
468
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnRNNBackwardDataEx(
G
GaoWei8 已提交
469
          handle, rnn.rnn_desc(), rnn.y_seq_desc(), out_data, rnn.y_seq_desc(),
470 471 472 473 474
          out_grad_data, nullptr, nullptr, rnn.last_h_desc(), last_h_grad_data,
          rnn.last_c_desc(), last_c_grad_data, rnn.weight_desc(), weight_data,
          rnn.init_h_desc(), init_h_data, rnn.init_c_desc(), init_c_data,
          rnn.x_seq_desc(), in_grad_data, rnn.init_h_desc(), init_h_grad_data,
          rnn.init_c_desc(), init_c_grad_data, nullptr, nullptr,
G
GaoWei8 已提交
475 476 477
          workspace_data_.data<uint8_t>(), workspace_size,
          const_cast<uint8_t *>(reserve_data), reserve_size));

478
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnRNNBackwardWeightsEx(
G
GaoWei8 已提交
479
          handle, rnn.rnn_desc(), rnn.x_seq_desc(), input->data<T>(),
480 481
          rnn.init_h_desc(), init_h->data<T>(), rnn.y_seq_desc(),
          out->data<T>(), workspace_data_.data<uint8_t>(), workspace_size,
G
GaoWei8 已提交
482
          rnn.weight_desc(), weight_grad_data,
483
          const_cast<uint8_t *>(reserve_data), reserve_size));
G
GaoWei8 已提交
484
#else
485 486 487 488
      PADDLE_THROW(platform::errors::Unavailable(
          "The padded input of rnn is supported by cudnnRNNBackwardDataEx, "
          "cudnnRNNBackwardWeightsEx, but it only works when the version "
          "of cudnn is larger than 7.2.1"));
G
GaoWei8 已提交
489 490
#endif
    }
L
liuhongyu 已提交
491 492 493 494 495 496 497
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
498 499 500 501 502
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(cudnn_lstm, ops::CudnnLSTMGPUKernel<float>);
REGISTER_OP_CUDA_KERNEL(cudnn_lstm_grad, ops::CudnnLSTMGPUGradKernel<float>);
#else
G
GaoWei8 已提交
503 504 505 506
REGISTER_OP_CUDA_KERNEL(cudnn_lstm, ops::CudnnLSTMGPUKernel<float>,
                        ops::CudnnLSTMGPUKernel<double>);
REGISTER_OP_CUDA_KERNEL(cudnn_lstm_grad, ops::CudnnLSTMGPUGradKernel<float>,
                        ops::CudnnLSTMGPUGradKernel<double>);
507
#endif