batch_norm_op.cu 58.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
Q
Qiao Longfei 已提交
16
#include <cfloat>
17 18
#include <string>
#include <vector>
19
#ifdef __NVCC__
20
#include "cub/cub.cuh"
21 22 23 24 25
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
S
Siddharth Goyal 已提交
26
#include "paddle/fluid/framework/data_layout.h"
27
#include "paddle/fluid/operators/batch_norm_op.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/operators/math/math_function.h"
29
#include "paddle/fluid/operators/norm_utils.cu.h"
K
Kexin Zhao 已提交
30
#include "paddle/fluid/platform/float16.h"
Q
Qiao Longfei 已提交
31

32
DECLARE_bool(cudnn_batchnorm_spatial_persistent);
W
Wu Yi 已提交
33

Q
Qiao Longfei 已提交
34 35 36 37
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
38
using DataLayout = framework::DataLayout;
Q
Qiao Longfei 已提交
39 40
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
K
Kexin Zhao 已提交
41
template <typename T>
K
update  
Kexin Zhao 已提交
42
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;
Q
Qiao Longfei 已提交
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
template <typename T, framework::DataLayout layout>
static __global__ void BNForwardInference(
    const T *x, const BatchNormParamType<T> *mean,
    const BatchNormParamType<T> *variance, const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *bias, const int C, const int N, const int HxW,
    const double epsilon, T *y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  int num = N * C * HxW;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C;
    BatchNormParamType<T> x_sub_mean =
        static_cast<BatchNormParamType<T>>(x[i]) - mean[c];
    BatchNormParamType<T> inv_var = 1 / sqrt(variance[c] + epsilon);
    y[i] = static_cast<T>(scale[c] * x_sub_mean * inv_var + bias[c]);
  }
}

template <typename T, int BlockDim, framework::DataLayout layout>
static __global__ LAUNCH_BOUNDS(BlockDim) void BNForwardTraining(
    const T *x, const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *bias, const int C, const int N, const int HxW,
    const double epsilon, double exponentialAverageFactor, T *y,
    BatchNormParamType<T> *mean, BatchNormParamType<T> *variance,
    BatchNormParamType<T> *save_mean,
    BatchNormParamType<T> *save_inv_variance) {
  int outer_size = C;
  int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage mean_storage;
  __shared__ typename BlockReduce::TempStorage variance_storeage;
  __shared__ BatchNormParamType<T> mean_val;
  __shared__ BatchNormParamType<T> variance_val;
  __shared__ BatchNormParamType<T> inv_var_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> x_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> x_square_sum = static_cast<BatchNormParamType<T>>(0);

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> x_i = static_cast<BatchNormParamType<T>>(x[index]);
      x_sum += x_i;
      x_square_sum += x_i * x_i;
    }
    x_sum = BlockReduce(mean_storage).Reduce(x_sum, cub::Sum());
    x_square_sum =
        BlockReduce(variance_storeage).Reduce(x_square_sum, cub::Sum());
    if (threadIdx.x == 0) {
      mean_val = x_sum / inner_size;
      variance_val = x_square_sum / inner_size - mean_val * mean_val;
      inv_var_val = 1 / sqrt(variance_val + epsilon);

      if (save_mean && save_inv_variance) {
        save_mean[i] = mean_val;
        save_inv_variance[i] = inv_var_val;
      }
      mean[i] = (1 - exponentialAverageFactor) * mean_val +
                exponentialAverageFactor * mean[i];
      variance[i] = (1 - exponentialAverageFactor) * variance_val +
                    exponentialAverageFactor * variance[i];
    }
    __syncthreads();

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> x_sub_mean =
          static_cast<BatchNormParamType<T>>(x[index]) - mean_val;
      y[index] = scale[i] * x_sub_mean * inv_var_val + bias[i];
    }
  }
}

Q
Qiao Longfei 已提交
121
template <typename T>
Q
QI JUN 已提交
122 123
class BatchNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
124 125
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
K
Kaipeng Deng 已提交
126 127 128
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument("It must use CUDAPlace."));
Q
Qiao Longfei 已提交
129
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
130
    float momentum = ctx.Attr<float>("momentum");
Q
Qiao Longfei 已提交
131
    const bool is_test = ctx.Attr<bool>("is_test");
132
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
133
    const bool trainable_stats = ctx.Attr<bool>("trainable_statistics");
Q
QI JUN 已提交
134 135 136
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
137

138 139
    bool test_mode = is_test && (!trainable_stats);

Q
Qiao Longfei 已提交
140 141 142 143
    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
C
ceci3 已提交
144 145 146 147 148 149
    PADDLE_ENFORCE_EQ(
        x_dims.size() >= 2 && x_dims.size() <= 5, true,
        platform::errors::InvalidArgument(
            "The size of input's dimensions should be between 2 and 5"
            "But received: the size of input's dimensions is [%d]",
            x_dims.size()));
Q
Qiao Longfei 已提交
150

151 152 153
    auto *y = ctx.Output<Tensor>("Y");
    y->mutable_data<T>(ctx.GetPlace());

154 155 156 157
    int N, C, H, W, D;
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);

    auto dtype = platform::CudnnDataType<T>::type;
158 159

#ifdef PADDLE_WITH_HIP
160 161 162 163 164 165
    auto compute_format = data_layout == DataLayout::kNHWC ? DataLayout::kNHWC
                                                           : DataLayout::kNCHW;

// TODO(wangran16): wait for MIOpen to improve the performance of BN
// HIP do not support compute format of NHWC
// auto compute_format = DataLayout::kNCHW;
166
#else
167
    const bool fast_nhwc_batch_norm =
168
        test_mode ||
169 170 171 172 173 174
        (dtype == CUDNN_DATA_HALF && FLAGS_cudnn_batchnorm_spatial_persistent);

    auto compute_format =
        fast_nhwc_batch_norm && data_layout == DataLayout::kNHWC
            ? DataLayout::kNHWC
            : DataLayout::kNCHW;
175
#endif
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

    Tensor transformed_x(x->type());
    Tensor transformed_y(y->type());
    if (data_layout == DataLayout::kNHWC &&
        compute_format == DataLayout::kNCHW && x_dims.size() > 2) {
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                           &transformed_x);
      TransToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                          &transformed_x);
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, y,
                                                           &transformed_y);
    } else {
      transformed_x.ShareDataWith(*x);
      transformed_y.ShareDataWith(*y);
    }

193 194
// ------------------- cudnn descriptors ---------------------
#ifdef PADDLE_WITH_HIP
195 196 197 198 199
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// miopenTensorDescriptor_t data_desc_;
// miopenTensorDescriptor_t bn_param_desc_;
// miopenBatchNormMode_t mode_;

200
// PADDLE_ENFORCE_GPU_SUCCESS(
201
//     platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
202
// PADDLE_ENFORCE_GPU_SUCCESS(
203
//     platform::dynload::miopenCreateTensorDescriptor(&bn_param_desc_));
204
#else
Q
Qiao Longfei 已提交
205 206 207 208
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

209
    PADDLE_ENFORCE_GPU_SUCCESS(
210
        platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
211
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
Qiao Longfei 已提交
212
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
213
#endif
Q
Qiao Longfei 已提交
214 215 216 217 218 219 220

    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
221 222

#ifdef PADDLE_WITH_HIP
223 224
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// mode_ = miopenBNSpatial;
225
#elif CUDNN_VERSION_MIN(7, 0, 1)
W
Wu Yi 已提交
226 227
    if (FLAGS_cudnn_batchnorm_spatial_persistent) {
      mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
228 229
    } else if (H == 1 && W == 1) {
      mode_ = CUDNN_BATCHNORM_PER_ACTIVATION;
W
Wu Yi 已提交
230 231 232
    } else {
      mode_ = CUDNN_BATCHNORM_SPATIAL;
    }
233
#else
234 235 236 237 238
    if (H == 1 && W == 1) {
      mode_ = CUDNN_BATCHNORM_PER_ACTIVATION;
    } else {
      mode_ = CUDNN_BATCHNORM_SPATIAL;
    }
239
#endif  // CUDNN_VERSION_MIN(7, 0, 1)
Q
Qiao Longfei 已提交
240

M
minqiyang 已提交
241
    VLOG(3) << "Setting descriptors.";
Q
Qiao Longfei 已提交
242 243
    std::vector<int> dims;
    std::vector<int> strides;
244
    if (compute_format == DataLayout::kNCHW) {
Q
Qiao Longfei 已提交
245 246 247 248 249 250
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * D * C, 1, W * D * C, D * C, C};
    }
251 252

#ifdef PADDLE_WITH_HIP
253
// TODO(wangran16): wait for MIOpen to improve the performance of BN
254
// PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
255 256 257 258
//     data_desc_, CudnnDataType<T>::type,
//     x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
//     const_cast<int *>(strides.data())));
// Note: PERSISTENT not implemented for inference
259
// PADDLE_ENFORCE_GPU_SUCCESS(
260 261
//     platform::dynload::miopenDeriveBNTensorDescriptor(
//         bn_param_desc_, data_desc_, test_mode ? miopenBNSpatial : mode_));
262
#else
263
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
Qiao Longfei 已提交
264 265
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
K
Kexin Zhao 已提交
266
    // Note: PERSISTENT not implemented for inference
267 268 269
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnDeriveBNTensorDescriptor(
        bn_param_desc_, data_desc_,
        test_mode ? CUDNN_BATCHNORM_SPATIAL : mode_));
270
#endif
Q
Qiao Longfei 已提交
271 272 273 274

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

Q
QI JUN 已提交
275
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Q
Qiao Longfei 已提交
276

Q
QI JUN 已提交
277
    auto handle = dev_ctx.cudnn_handle();
Q
Qiao Longfei 已提交
278 279

    // Now, depending on whether we are running test or not, we have two paths.
280 281 282 283
    // It is training mode when it's not reference AND not using pre-trained
    // model.
    bool training = !test_mode && !use_global_stats;
    if (!training) {
Q
Qiao Longfei 已提交
284 285 286 287
      // only when test we use input to do computation.
      const auto *est_mean = ctx.Input<Tensor>("Mean");
      const auto *est_var = ctx.Input<Tensor>("Variance");
      // Run inference mode.
C
ceci3 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
      PADDLE_ENFORCE_EQ(
          est_mean->dims().size(), 1UL,
          platform::errors::InvalidArgument(
              "The size of mean's dimensions must equal to 1."
              "But received: the size of mean's dimensions mean is [%d],"
              "the dimensions of mean is [%s].",
              est_mean->dims().size(), est_mean->dims()));
      PADDLE_ENFORCE_EQ(
          est_var->dims().size(), 1UL,
          platform::errors::InvalidArgument(
              "The size of variance's dimensions must equal to 1."
              "But received: the size of variance's dimensions is [%d],"
              "the dimensions of variance is [%s].",
              est_var->dims().size(), est_var->dims()));
      PADDLE_ENFORCE_EQ(
          est_mean->dims()[0], C,
          platform::errors::InvalidArgument(
              "The first dimension of mean must equal to the number of "
              "Channels, which is [%d]. But received: the first dimension"
              "of mean is [%d], the dimensions of mean is [%s].",
              C, est_mean->dims()[0], est_mean->dims()));
      PADDLE_ENFORCE_EQ(
          est_var->dims()[0], C,
          platform::errors::InvalidArgument(
              "The first dimension of variance must equal to the number"
              "of Channels, which is [%d]. But received: the first dimension of"
              "variance is [%d], the dimensions of variance is [%s].",
              C, est_var->dims()[0], est_var->dims()));
Q
Qiao Longfei 已提交
316

317
#ifdef PADDLE_WITH_HIP
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
      const int block_size = 256;
      const int grid_size = (N * C * H * W * D + block_size - 1) / block_size;
      if (compute_format == DataLayout::kNCHW) {
        BNForwardInference<
            T,
            DataLayout::kNCHW><<<grid_size, block_size, 0, dev_ctx.stream()>>>(
            transformed_x.template data<T>(),
            est_mean->template data<BatchNormParamType<T>>(),
            est_var->template data<BatchNormParamType<T>>(),
            scale->template data<BatchNormParamType<T>>(),
            bias->template data<BatchNormParamType<T>>(), C, N, H * W * D,
            epsilon, transformed_y.template data<T>());
      } else {
        BNForwardInference<
            T,
            DataLayout::kNHWC><<<grid_size, block_size, 0, dev_ctx.stream()>>>(
            transformed_x.template data<T>(),
            est_mean->template data<BatchNormParamType<T>>(),
            est_var->template data<BatchNormParamType<T>>(),
            scale->template data<BatchNormParamType<T>>(),
            bias->template data<BatchNormParamType<T>>(), C, N, H * W * D,
            epsilon, transformed_y.template data<T>());
      }

// TODO(wangran16): wait for MIOpen to improve the performance of BN
343
// PADDLE_ENFORCE_GPU_SUCCESS(
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
//     platform::dynload::miopenBatchNormalizationForwardInference(
//         handle, miopenBNSpatial,
//         const_cast<void *>(
//             static_cast<const void *>(CudnnDataType<T>::kOne())),
//         const_cast<void *>(
//             static_cast<const void *>(CudnnDataType<T>::kZero())),
//         data_desc_,
//         static_cast<const void *>(transformed_x.template data<T>()),
//         data_desc_,
//         static_cast<void *>(
//             transformed_y.template mutable_data<T>(ctx.GetPlace())),
//         bn_param_desc_,
//         const_cast<void *>(static_cast<const void *>(
//             scale->template data<BatchNormParamType<T>>())),
//         const_cast<void *>(static_cast<const void *>(
//             bias->template data<BatchNormParamType<T>>())),
//         const_cast<void *>(static_cast<const void *>(
//             est_mean->template data<BatchNormParamType<T>>())),
//         const_cast<void *>(static_cast<const void *>(
//             est_var->template data<BatchNormParamType<T>>())),
//         epsilon));
365
#else
366
      PADDLE_ENFORCE_GPU_SUCCESS(
367 368 369 370 371 372 373 374 375 376 377
          platform::dynload::cudnnBatchNormalizationForwardInference(
              handle,
              // Note: PERSISTENT not implemented for inference
              CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
              CudnnDataType<T>::kZero(), data_desc_,
              transformed_x.template data<T>(), data_desc_,
              transformed_y.template mutable_data<T>(ctx.GetPlace()),
              bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
              bias->template data<BatchNormParamType<T>>(),
              est_mean->template data<BatchNormParamType<T>>(),
              est_var->template data<BatchNormParamType<T>>(), epsilon));
378
#endif
Q
Qiao Longfei 已提交
379
    } else {
380 381 382 383 384 385 386 387 388
      // if MomentumTensor is set, use MomentumTensor value, momentum
      // is only used in this training branch
      if (ctx.HasInput("MomentumTensor")) {
        const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
        Tensor mom_cpu;
        TensorCopySync(*mom_tensor, platform::CPUPlace(), &mom_cpu);
        momentum = mom_cpu.data<float>()[0];
      }

Q
Qiao Longfei 已提交
389
      // Run training mode.
390 391
      // obtain running mean and running inv var, and there is no need
      // to initialize them.
D
Dang Qingqing 已提交
392 393 394 395 396 397 398 399 400 401 402

      auto *mean_out = ctx.Output<Tensor>("MeanOut");
      auto *variance_out = ctx.Output<Tensor>("VarianceOut");
      mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());

      auto *saved_mean = ctx.Output<Tensor>("SavedMean");
      auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
      saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());

403
      if ((N * H * W * D) == 1) {
404 405
        // Only 1 element in normalization dimension,
        // skip the batch norm calculation, let y = x.
406
        framework::TensorCopy(*x, ctx.GetPlace(), y);
407 408 409
      } else {
        double this_factor = 1. - momentum;

410 411
        bool called = false;
#if CUDNN_VERSION_MIN(7, 4, 1)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        called = true;
        size_t workspace_size = 0;
        size_t reserve_space_size = 0;
        void *reserve_space_ptr = nullptr;
        void *workspace_ptr = nullptr;
        Tensor workspace_tensor;
        // Create reserve space and workspace for batch norm.
        // Create tensor for each batchnorm op, it will be used in the
        // backward. Thus this tensor shouldn't be temp.
        auto *reserve_space = ctx.Output<Tensor>("ReserveSpace");
        PADDLE_ENFORCE_NOT_NULL(
            reserve_space,
            platform::errors::NotFound(
                "The argument ReserveSpace of batch_norm op is not found."));

        // --------------- cudnn batchnorm workspace ---------------
428
        PADDLE_ENFORCE_GPU_SUCCESS(
429 430 431 432 433 434 435 436 437 438 439 440 441
            platform::dynload::
                cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(
                    /*handle=*/handle,
                    /*mode=*/mode_,
                    /*bnIps=*/CUDNN_BATCHNORM_OPS_BN,
                    /*xDesc=*/data_desc_,
                    /*zDesc=*/nullptr,
                    /*yDesc=*/data_desc_,
                    /*bnScaleBiasMeanVarDesc=*/bn_param_desc_,
                    /*activationDesc=*/nullptr,
                    /*sizeInBytes=*/&workspace_size));

        // -------------- cudnn batchnorm reserve space --------------
442
        PADDLE_ENFORCE_GPU_SUCCESS(
443 444 445 446 447 448 449 450 451 452 453 454 455
            platform::dynload::
                cudnnGetBatchNormalizationTrainingExReserveSpaceSize(
                    /*handle=*/handle,
                    /*mode=*/mode_,
                    /*bnOps=*/CUDNN_BATCHNORM_OPS_BN,
                    /*activationDesc=*/nullptr,
                    /*xDesc=*/data_desc_,
                    /*sizeInBytes=*/&reserve_space_size));

        reserve_space_ptr = reserve_space->mutable_data(
            ctx.GetPlace(), transformed_x.type(), reserve_space_size);
        workspace_ptr = workspace_tensor.mutable_data(
            ctx.GetPlace(), transformed_x.type(), workspace_size);
456
        PADDLE_ENFORCE_GPU_SUCCESS(
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
            platform::dynload::cudnnBatchNormalizationForwardTrainingEx(
                handle, mode_, CUDNN_BATCHNORM_OPS_BN, CudnnDataType<T>::kOne(),
                CudnnDataType<T>::kZero(), data_desc_,
                transformed_x.template data<T>(), nullptr, nullptr, data_desc_,
                transformed_y.template data<T>(), bn_param_desc_,
                scale->template data<BatchNormParamType<T>>(),
                bias->template data<BatchNormParamType<T>>(), this_factor,
                mean_out->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                variance_out->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                epsilon,
                saved_mean->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                saved_variance->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                nullptr, workspace_ptr, workspace_size, reserve_space_ptr,
                reserve_space_size));
#endif  // CUDNN_VERSION_MIN(7, 4, 1)
476
        if (!called) {
477
#ifdef PADDLE_WITH_HIP
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
          const int num = transformed_x.numel();
          const int block = 256;
          const int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
          const int max_blocks = std::max(max_threads / block, 1);
          const int grid = std::min(C, max_blocks);
          if (compute_format == DataLayout::kNCHW) {
            BNForwardTraining<
                T, block,
                DataLayout::kNCHW><<<grid, block, 0, dev_ctx.stream()>>>(
                transformed_x.template data<T>(),
                scale->template data<BatchNormParamType<T>>(),
                bias->template data<BatchNormParamType<T>>(), C, N, H * W * D,
                epsilon, this_factor, transformed_y.template data<T>(),
                mean_out->template data<BatchNormParamType<T>>(),
                variance_out->template data<BatchNormParamType<T>>(),
                saved_mean->template data<BatchNormParamType<T>>(),
                saved_variance->template data<BatchNormParamType<T>>());
          } else {
            BNForwardTraining<
                T, block,
                DataLayout::kNHWC><<<grid, block, 0, dev_ctx.stream()>>>(
                transformed_x.template data<T>(),
                scale->template data<BatchNormParamType<T>>(),
                bias->template data<BatchNormParamType<T>>(), C, N, H * W * D,
                epsilon, this_factor, transformed_y.template data<T>(),
                mean_out->template data<BatchNormParamType<T>>(),
                variance_out->template data<BatchNormParamType<T>>(),
                saved_mean->template data<BatchNormParamType<T>>(),
                saved_variance->template data<BatchNormParamType<T>>());
          }

// TODO(wangran16): wait for MIOpen to improve the performance of BN
510
// PADDLE_ENFORCE_GPU_SUCCESS(
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
//     platform::dynload::miopenBatchNormalizationForwardTraining(
//         handle, mode_, const_cast<void *>(static_cast<const void *>(
//                            CudnnDataType<T>::kOne())),
//         const_cast<void *>(
//             static_cast<const void *>(CudnnDataType<T>::kZero())),
//         data_desc_,
//         static_cast<const void *>(transformed_x.template data<T>()),
//         data_desc_,
//         static_cast<void *>(
//             transformed_y.template mutable_data<T>(ctx.GetPlace())),
//         bn_param_desc_,
//         const_cast<void *>(static_cast<const void *>(
//             scale->template data<BatchNormParamType<T>>())),
//         const_cast<void *>(static_cast<const void *>(
//             bias->template data<BatchNormParamType<T>>())),
//         this_factor,
//         static_cast<void *>(
//             mean_out->template mutable_data<BatchNormParamType<T>>(
//                 ctx.GetPlace())),
//         static_cast<void *>(variance_out->template mutable_data<
//                             BatchNormParamType<T>>(ctx.GetPlace())),
//         epsilon,
//         static_cast<void *>(
//             saved_mean->template mutable_data<BatchNormParamType<T>>(
//                 ctx.GetPlace())),
//         static_cast<void *>(saved_variance->template mutable_data<
//                             BatchNormParamType<T>>(ctx.GetPlace()))));
538
#else
539
          PADDLE_ENFORCE_GPU_SUCCESS(
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
              platform::dynload::cudnnBatchNormalizationForwardTraining(
                  handle, mode_, CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), data_desc_,
                  transformed_x.template data<T>(), data_desc_,
                  transformed_y.template mutable_data<T>(ctx.GetPlace()),
                  bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
                  bias->template data<BatchNormParamType<T>>(), this_factor,
                  mean_out->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  variance_out->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  epsilon,
                  saved_mean->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  saved_variance->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace())));
556
#endif
557
        }
558
      }
Q
Qiao Longfei 已提交
559 560
    }

561 562 563 564 565 566
    if (data_layout == DataLayout::kNHWC &&
        compute_format == DataLayout::kNCHW && x_dims.size() > 2) {
      VLOG(3) << "Transform batchnorm output from NCHW to NHWC";
      TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
          ctx, &transformed_y, y);
    }
567
#ifdef PADDLE_WITH_HIP
568 569
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// clean when exit.
570
// PADDLE_ENFORCE_GPU_SUCCESS(
571
//     platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
572
// PADDLE_ENFORCE_GPU_SUCCESS(
573
//     platform::dynload::miopenDestroyTensorDescriptor(bn_param_desc_));
574
#else
Q
Qiao Longfei 已提交
575
    // clean when exit.
576
    PADDLE_ENFORCE_GPU_SUCCESS(
577
        platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
578
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
Qiao Longfei 已提交
579
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
580
#endif
Q
Qiao Longfei 已提交
581 582 583
  }
};

584
template <typename T, int BlockDim, framework::DataLayout layout>
585
static __global__ LAUNCH_BOUNDS(BlockDim) void KeBNBackwardScaleBias(
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    const T *dy, const T *x, const BatchNormParamType<T> *mean,
    const BatchNormParamType<T> *variance, const double epsilon, const int N,
    const int C, const int HxW, BatchNormParamType<T> *dscale,
    BatchNormParamType<T> *dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> ds_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> db_sum = static_cast<BatchNormParamType<T>>(0);

    BatchNormParamType<T> inv_var_i = 1.0 / sqrt(variance[i] + epsilon);
    BatchNormParamType<T> mean_i = mean[i];
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      ds_sum += static_cast<BatchNormParamType<T>>(dy[index]) *
                (static_cast<BatchNormParamType<T>>(x[index]) - mean_i);
      db_sum += static_cast<BatchNormParamType<T>>(dy[index]);
    }
    ds_sum = BlockReduce(ds_storage).Reduce(ds_sum, cub::Sum());
    db_sum = BlockReduce(db_storage).Reduce(db_sum, cub::Sum());
    if (threadIdx.x == 0) {
      dscale[i] = ds_sum * inv_var_i;
      dbias[i] = db_sum;
    }
    __syncthreads();
  }
}

Q
qingqing01 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
template <typename T, framework::DataLayout layout>
static __global__ void KeBNBackwardData(const T *dy,
                                        const BatchNormParamType<T> *scale,
                                        const BatchNormParamType<T> *variance,
                                        const double epsilon, const int C,
                                        const int HxW, const int num, T *dx) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C;
    BatchNormParamType<T> inv_var = 1.0 / sqrt(variance[c] + epsilon);
    dx[i] = static_cast<T>(static_cast<BatchNormParamType<T>>(dy[i]) *
                           scale[c] * inv_var);
  }
}

K
Kaipeng Deng 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
template <typename T>
static __global__ void KeBNRestoreData(const framework::DataLayout layout, T *x,
                                       const BatchNormParamType<T> *scale,
                                       const BatchNormParamType<T> *bias,
                                       const BatchNormParamType<T> *mean,
                                       const BatchNormParamType<T> *variance,
                                       double epsilon, int C, int M,
                                       const int num, const T *y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? (i / M) % C : i % C;
    auto y_i = static_cast<BatchNormParamType<T>>(y[i]);
    auto x_i = (y_i - bias[c]) / scale[c] / variance[c] + mean[c];
    x[i] = static_cast<T>(x_i);
  }
}

template <typename T>
class InplaceHelper {
 public:
  void operator()(const framework::DataLayout layout, T *x,
                  const BatchNormParamType<T> *scale,
                  const BatchNormParamType<T> *bias,
                  const BatchNormParamType<T> *mean,
                  const BatchNormParamType<T> *variance, double epsilon, int C,
                  int M, const int num, const T *y, int grid2, const int block,
663
                  const gpuStream_t &stream) {
K
Kaipeng Deng 已提交
664 665 666 667 668 669 670
    PADDLE_ENFORCE_EQ(x, y, platform::errors::InvalidArgument(
                                "X and Y should be inplaced in inplace mode"));
    KeBNRestoreData<<<grid2, block, 0, stream>>>(
        layout, x, scale, bias, mean, variance, epsilon, C, M, num, y);
  }
};

L
lvmengsi 已提交
671
template <typename T, int BlockDim, framework::DataLayout layout>
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
static __global__ LAUNCH_BOUNDS(BlockDim) void BNBackward(
    const T *dy, const T *x, const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *saved_mean,
    const BatchNormParamType<T> *saved_inv_variance, const int C, const int N,
    const int HxW, const double epsilon, T *dx, BatchNormParamType<T> *dscale,
    BatchNormParamType<T> *dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;
  __shared__ typename BlockReduce::TempStorage mean_storage;
  __shared__ typename BlockReduce::TempStorage variance_storeage;
  __shared__ BatchNormParamType<T> inv_var_val;
  __shared__ BatchNormParamType<T> mean_val;
  __shared__ BatchNormParamType<T> dscale_val;
  __shared__ BatchNormParamType<T> dbias_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> ds_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> db_sum = static_cast<BatchNormParamType<T>>(0);

    if (saved_mean && saved_inv_variance) {
      if (threadIdx.x == 0) {
        inv_var_val = saved_inv_variance[i];
        mean_val = saved_mean[i];
      }
    } else {
      BatchNormParamType<T> x_sum = static_cast<BatchNormParamType<T>>(0);
      BatchNormParamType<T> x_square_sum =
          static_cast<BatchNormParamType<T>>(0);

      for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
        const int index = layout == framework::DataLayout::kNCHW
                              ? (j / HxW * C + i) * HxW + j % HxW
                              : j * outer_size + i;
        BatchNormParamType<T> x_i =
            static_cast<BatchNormParamType<T>>(x[index]);
        x_sum += x_i;
        x_square_sum += x_i * x_i;
      }
      x_sum = BlockReduce(mean_storage).Reduce(x_sum, cub::Sum());
      x_square_sum =
          BlockReduce(variance_storeage).Reduce(x_square_sum, cub::Sum());
      if (threadIdx.x == 0) {
        mean_val = x_sum / inner_size;
        inv_var_val =
            1 / sqrt(x_square_sum / inner_size - mean_val * mean_val + epsilon);
      }
    }
    __syncthreads();

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> dy_i =
          static_cast<BatchNormParamType<T>>(dy[index]);
      ds_sum +=
          dy_i * (static_cast<BatchNormParamType<T>>(x[index]) - mean_val);
      db_sum += dy_i;
    }
    ds_sum = BlockReduce(ds_storage).Reduce(ds_sum, cub::Sum());
    db_sum = BlockReduce(db_storage).Reduce(db_sum, cub::Sum());
    if (threadIdx.x == 0) {
      dscale_val = ds_sum * inv_var_val;
      dbias_val = db_sum;
      dscale[i] = dscale_val;
      dbias[i] = dbias_val;
    }
    __syncthreads();

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      dx[index] = scale[i] * inv_var_val *
                  (static_cast<BatchNormParamType<T>>(dy[index]) -
                   dbias_val / static_cast<BatchNormParamType<T>>(inner_size) -
                   (static_cast<BatchNormParamType<T>>(x[index]) - mean_val) *
                       inv_var_val * dscale_val / inner_size);
    }
  }
}

template <typename T, int BlockDim, framework::DataLayout layout>
static __global__ LAUNCH_BOUNDS(BlockDim) void BNBackwardData(
    const T *dy, const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *mean, const T *x,
    const BatchNormParamType<T> *variance, const int C, const int N,
    const int HxW, T *dx) {
L
lvmengsi 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage dy_storage;
  __shared__ typename BlockReduce::TempStorage dy_x_sub_mean_storage;
  __shared__ BatchNormParamType<T> dy_sum_val;
  __shared__ BatchNormParamType<T> dy_x_sub_mean_sum_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> inv_var_i = variance[i];
    BatchNormParamType<T> mean_i = mean[i];
    BatchNormParamType<T> dy_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> dy_x_sub_mean_sum =
        static_cast<BatchNormParamType<T>>(0);
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> dy_i =
          static_cast<BatchNormParamType<T>>(dy[index]);
      dy_sum += dy_i;
      dy_x_sub_mean_sum +=
          dy_i * (static_cast<BatchNormParamType<T>>(x[index]) - mean_i);
    }

    dy_sum = BlockReduce(dy_storage).Reduce(dy_sum, cub::Sum());
    dy_x_sub_mean_sum = BlockReduce(dy_x_sub_mean_storage)
                            .Reduce(dy_x_sub_mean_sum, cub::Sum());

    if (threadIdx.x == 0) {
      dy_sum_val = dy_sum;
      dy_x_sub_mean_sum_val = dy_x_sub_mean_sum;
    }
    __syncthreads();
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      dx[index] =
          (static_cast<BatchNormParamType<T>>(dy[index]) -
           dy_sum_val / static_cast<BatchNormParamType<T>>(inner_size) -
           (static_cast<BatchNormParamType<T>>(x[index]) - mean_i) *
               dy_x_sub_mean_sum_val * inv_var_i * inv_var_i / inner_size) *
          scale[i] * inv_var_i;
    }
  }
}

Q
Qiao Longfei 已提交
811
template <typename T>
Q
QI JUN 已提交
812
class BatchNormGradKernel<platform::CUDADeviceContext, T>
Q
Qiao Longfei 已提交
813 814 815
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
K
Kaipeng Deng 已提交
816 817 818
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument("It must use CUDAPlace."));
Q
Qiao Longfei 已提交
819
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
Q
QI JUN 已提交
820
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
C
ceci3 已提交
821
    bool use_global_stats = ctx.Attr<bool>("use_global_stats");
822

Q
QI JUN 已提交
823 824
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
825 826
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
K
Kaipeng Deng 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
    const auto *bias = ctx.Input<Tensor>("Bias");

    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    // batch_norm with inplace as false will take X as grad input, which
    // is same as cuDNN batch_norm backward calculation, batch_norm
    // with inplace as true only take Y as input and X should be calculate
    // by inverse operation of batch_norm on Y
    const Tensor *x;
    bool is_inplace;
    if (ctx.HasInput("Y")) {
      x = ctx.Input<Tensor>("Y");
      is_inplace = true;
842 843 844 845 846
      if (d_x) {
        PADDLE_ENFORCE_EQ(d_x, d_y,
                          platform::errors::InvalidArgument(
                              "X@GRAD and Y@GRAD not inplace in inplace mode"));
      }
K
Kaipeng Deng 已提交
847 848 849
    } else {
      x = ctx.Input<Tensor>("X");
      is_inplace = false;
850 851 852 853 854
      if (d_x) {
        PADDLE_ENFORCE_NE(
            d_x, d_y, platform::errors::InvalidArgument(
                          "X@GRAD and Y@GRAD inplaced in non-inplace mode"));
      }
K
Kaipeng Deng 已提交
855 856
    }

857
    const bool is_test = ctx.Attr<bool>("is_test");
C
ceci3 已提交
858
    use_global_stats = is_test || use_global_stats;
Q
Qiao Longfei 已提交
859 860 861

    const auto &x_dims = x->dims();

C
ceci3 已提交
862 863 864 865 866 867 868
    PADDLE_ENFORCE_EQ(
        x_dims.size() >= 2 && x_dims.size() <= 5, true,
        platform::errors::InvalidArgument(
            "The size of input's dimensions should be between 2 and 5."
            "But received: the size of input's dimensions is [%d],"
            "the dimensions of input is [%s]",
            x_dims.size(), x_dims));
Q
Qiao Longfei 已提交
869
    int N, C, H, W, D;
Q
QI JUN 已提交
870
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
871

872
    // init output
873 874 875
    if (d_x) {
      d_x->mutable_data<T>(ctx.GetPlace());
    }
K
Kaipeng Deng 已提交
876

877 878 879
    if (d_scale && d_bias) {
      d_scale->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      d_bias->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
880
    }
C
ceci3 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893
    PADDLE_ENFORCE_EQ(
        scale->dims().size(), 1UL,
        platform::errors::InvalidArgument(
            "The size of scale's dimensions must equal to 1. But received: "
            "the size of scale's dimensions is [%d], the dimensions of scale "
            "is [%s].",
            scale->dims().size(), scale->dims()));
    PADDLE_ENFORCE_EQ(
        scale->dims()[0], C,
        platform::errors::InvalidArgument(
            "The first dimension of scale must equal to Channels[%d]. But "
            "received: the first dimension of scale is [%d]",
            C, scale->dims()[0]));
Q
Qiao Longfei 已提交
894

895 896
    auto dtype = platform::CudnnDataType<T>::type;
    const auto *reserve_space = ctx.Input<Tensor>("ReserveSpace");
897
#ifdef PADDLE_WITH_HIP
898 899 900 901 902 903
    auto compute_format = data_layout == DataLayout::kNHWC ? DataLayout::kNHWC
                                                           : DataLayout::kNCHW;

// TODO(wangran16): wait for MIOpen to improve the performance of BN
// HIP do not support compute format of NHWC
// auto compute_format = DataLayout::kNCHW;
904
#else
905 906 907 908 909 910 911
    const bool fast_nhwc_batch_norm =
        dtype == CUDNN_DATA_HALF && FLAGS_cudnn_batchnorm_spatial_persistent &&
        reserve_space != nullptr;
    auto compute_format =
        fast_nhwc_batch_norm && data_layout == DataLayout::kNHWC
            ? DataLayout::kNHWC
            : DataLayout::kNCHW;
912
#endif
913 914 915

    Tensor transformed_x(x->type());
    Tensor transformed_d_y(d_y->type());
916
    Tensor transformed_d_x;
917
    if (data_layout == DataLayout::kNHWC &&
918
        compute_format == DataLayout::kNCHW && x_dims.size() > 2) {
919 920 921 922 923 924 925 926 927
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                           &transformed_x);
      TransToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                          &transformed_x);
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_y,
                                                           &transformed_d_y);
      TransToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_y,
                                                          &transformed_d_y);
928 929 930 931
      if (d_x) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_x,
                                                             &transformed_d_x);
      }
932 933 934
    } else {
      transformed_x.ShareDataWith(*x);
      transformed_d_y.ShareDataWith(*d_y);
935 936 937
      if (d_x) {
        transformed_d_x.ShareDataWith(*d_x);
      }
938 939
    }

Z
zchen0211 已提交
940 941
    std::vector<int> dims;
    std::vector<int> strides;
942
    if (compute_format == DataLayout::kNCHW) {
Z
zchen0211 已提交
943 944 945 946 947 948
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * C * D, 1, W * D * C, D * C, C};
    }
Q
Qiao Longfei 已提交
949

950
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
951
    const int num = transformed_x.numel();
952 953 954
#ifdef HIPCC
    const int block = 256;
#else
L
lvmengsi 已提交
955
    const int block = 512;
956
#endif
L
lvmengsi 已提交
957 958 959 960
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    int grid1 = (num + block - 1) / block;
    int grid2 = std::min(C, max_blocks);
K
Kaipeng Deng 已提交
961 962
    auto stream = dev_ctx.stream();
    InplaceHelper<T> inplace_functor;
L
lvmengsi 已提交
963

964 965
    if (!use_global_stats) {
      if ((N * H * W * D) == 1) {
966 967 968
        if (d_x) {
          framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
        }
969 970 971 972 973 974 975
        math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
            functor;
        functor(dev_ctx, d_scale, static_cast<BatchNormParamType<T>>(0));
        functor(dev_ctx, d_bias, static_cast<BatchNormParamType<T>>(0));
        return;
      }

976 977
// ------------------- cudnn descriptors ---------------------
#ifdef PADDLE_WITH_HIP
978 979 980 981 982
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// miopenTensorDescriptor_t data_desc_;
// miopenTensorDescriptor_t bn_param_desc_;
// miopenBatchNormMode_t mode_;

983
// PADDLE_ENFORCE_GPU_SUCCESS(
984
//     platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
985
// PADDLE_ENFORCE_GPU_SUCCESS(
986
//     platform::dynload::miopenCreateTensorDescriptor(&bn_param_desc_));
987
#else
988 989 990 991
      cudnnTensorDescriptor_t data_desc_;
      cudnnTensorDescriptor_t bn_param_desc_;
      cudnnBatchNormMode_t mode_;

992
      PADDLE_ENFORCE_GPU_SUCCESS(
993
          platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
994
      PADDLE_ENFORCE_GPU_SUCCESS(
995
          platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
996
#endif
997 998 999 1000 1001 1002
      if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
        LOG(ERROR) << "Provided epsilon is smaller than "
                   << "CUDNN_BN_MIN_EPSILON. Setting it to "
                   << "CUDNN_BN_MIN_EPSILON instead.";
      }
      epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
1003
#ifdef PADDLE_WITH_HIP
1004 1005
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// mode_ = miopenBNSpatial;
1006
#elif CUDNN_VERSION_MIN(7, 0, 1)
W
Wu Yi 已提交
1007 1008
      if (FLAGS_cudnn_batchnorm_spatial_persistent) {
        mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
1009 1010
      } else if (H == 1 && W == 1) {
        mode_ = CUDNN_BATCHNORM_PER_ACTIVATION;
W
Wu Yi 已提交
1011 1012 1013
      } else {
        mode_ = CUDNN_BATCHNORM_SPATIAL;
      }
1014
#else
1015 1016 1017 1018 1019
      if (H == 1 && W == 1) {
        mode_ = CUDNN_BATCHNORM_PER_ACTIVATION;
      } else {
        mode_ = CUDNN_BATCHNORM_SPATIAL;
      }
1020
#endif  // CUDNN_VERSION_MIN(7, 0, 1)
1021

1022
#ifdef PADDLE_WITH_HIP
1023
// TODO(wangran16): wait for MIOpen to improve the performance of BN
1024
// PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
1025 1026 1027
//     data_desc_, CudnnDataType<T>::type,
//     x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
//     const_cast<int *>(strides.data())));
1028
// PADDLE_ENFORCE_GPU_SUCCESS(
1029 1030
//     platform::dynload::miopenDeriveBNTensorDescriptor(bn_param_desc_,
//                                                       data_desc_, mode_));
1031
#else
1032
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
1033 1034
          data_desc_, CudnnDataType<T>::type,
          x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
1035
      PADDLE_ENFORCE_GPU_SUCCESS(
1036 1037
          platform::dynload::cudnnDeriveBNTensorDescriptor(bn_param_desc_,
                                                           data_desc_, mode_));
1038
#endif
1039 1040 1041

      const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
      const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
L
lvmengsi 已提交
1042
      const auto *saved_mean_data =
1043
          saved_mean->template data<BatchNormParamType<T>>();
L
lvmengsi 已提交
1044
      const auto *saved_var_data =
1045 1046
          saved_var->template data<BatchNormParamType<T>>();

K
Kaipeng Deng 已提交
1047 1048 1049 1050 1051 1052 1053 1054
      if (is_inplace) {
        inplace_functor(compute_format, transformed_x.data<T>(),
                        scale->template data<BatchNormParamType<T>>(),
                        bias->template data<BatchNormParamType<T>>(),
                        saved_mean_data, saved_var_data, epsilon, C, H * W * D,
                        num, transformed_x.data<T>(), grid2, block, stream);
      }

1055
      // This branch calls CUDNN APIs
1056
      if (d_x && d_scale && d_bias) {
1057 1058
        bool called = false;
#if CUDNN_VERSION_MIN(7, 4, 1)
1059 1060 1061 1062 1063 1064
        called = true;
        size_t workspace_size = 0;
        void *workspace_ptr = nullptr;
        Tensor workspace_tensor;
        auto reserve_space_size = reserve_space->memory_size();
        // --------------- cudnn batchnorm workspace ---------------
1065
        PADDLE_ENFORCE_GPU_SUCCESS(
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
            platform::dynload::
                cudnnGetBatchNormalizationBackwardExWorkspaceSize(
                    /*handle=*/dev_ctx.cudnn_handle(),
                    /*mode=*/mode_,
                    /*bnIps=*/CUDNN_BATCHNORM_OPS_BN,
                    /*xDesc=*/data_desc_,
                    /*yDesc=*/data_desc_,
                    /*dyDesc=*/data_desc_,
                    /*dzDesc=*/nullptr,
                    /*dxDesc=*/data_desc_,
                    /*bnScaleBiasMeanVarDesc=*/bn_param_desc_,
                    /*activationDesc=*/nullptr,
                    /*sizeInBytes=*/&workspace_size));

        workspace_ptr = workspace_tensor.mutable_data(
            ctx.GetPlace(), transformed_x.type(), workspace_size);

1083
        PADDLE_ENFORCE_GPU_SUCCESS(
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
            platform::dynload::cudnnBatchNormalizationBackwardEx(
                /*handle=*/dev_ctx.cudnn_handle(),
                /*mode=*/mode_,
                /*bnOps=*/CUDNN_BATCHNORM_OPS_BN,
                /*alphaDataDiff=*/CudnnDataType<T>::kOne(),
                /*betaDataDiff=*/CudnnDataType<T>::kZero(),
                /*alphaParamDiff=*/CudnnDataType<T>::kOne(),
                /*betaParamDiff=*/CudnnDataType<T>::kZero(),
                /*xDesc=*/data_desc_,
                /*xData=*/transformed_x.template data<T>(),
                /*yDesc=*/nullptr,
                /*yData=*/nullptr,
                /*dyDesc=*/data_desc_,
                /*dyData=*/transformed_d_y.template data<T>(),
                /*dzDesc=*/nullptr,
                /*dzData=*/nullptr,
                /*dxDesc=*/data_desc_,
                /*dxData=*/transformed_d_x.template mutable_data<T>(
                    ctx.GetPlace()),
                /*dBnScaleBiasDesc=*/bn_param_desc_,
                /*bnScaleData=*/scale->template data<BatchNormParamType<T>>(),
                /*bnBiasData=*/nullptr,
                /*dBnScaleData=*/d_scale
                    ->template mutable_data<BatchNormParamType<T>>(
                        ctx.GetPlace()),
                /*dBnBiasData=*/d_bias
                    ->template mutable_data<BatchNormParamType<T>>(
                        ctx.GetPlace()),
                /*epsilon=*/epsilon,
                /*savedMean=*/saved_mean_data,
                /*savedInvVariance=*/saved_var_data,
                /*activationDesc=*/nullptr,
                /*workspace=*/workspace_ptr,
                /*workSpaceSizeInBytes=*/workspace_size,
                /*reserveSpace=*/const_cast<T *>(
                    reserve_space->template data<T>()),
                /*reserveSpaceSizeInBytes=*/reserve_space_size));
#endif  // CUDNN_VERSION_MIN(7, 4, 1)
1122
        if (!called) {
1123
#ifdef PADDLE_WITH_HIP
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
          if (compute_format == DataLayout::kNCHW) {
            BNBackward<
                T, block,
                DataLayout::kNCHW><<<grid2, block, 0, dev_ctx.stream()>>>(
                transformed_d_y.template data<T>(),
                transformed_x.template data<T>(),
                scale->template data<BatchNormParamType<T>>(), saved_mean_data,
                saved_var_data, C, N, H * W * D, epsilon,
                transformed_d_x.template data<T>(),
                d_scale->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                d_bias->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()));
          } else {
            BNBackward<
                T, block,
                DataLayout::kNHWC><<<grid2, block, 0, dev_ctx.stream()>>>(
                transformed_d_y.template data<T>(),
                transformed_x.template data<T>(),
                scale->template data<BatchNormParamType<T>>(), saved_mean_data,
                saved_var_data, C, N, H * W * D, epsilon,
                transformed_d_x.template data<T>(),
                d_scale->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                d_bias->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()));
          }

// TODO(wangran16): wait for MIOpen to improve the performance of BN
1153
// PADDLE_ENFORCE_GPU_SUCCESS(
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
//     platform::dynload::miopenBatchNormalizationBackward(
//         dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
//         CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
//         CudnnDataType<T>::kZero(), data_desc_,
//         transformed_x.template data<T>(), data_desc_,
//         transformed_d_y.template data<T>(), data_desc_,
//         transformed_d_x.template mutable_data<T>(ctx.GetPlace()),
//         bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
//         d_scale->template mutable_data<BatchNormParamType<T>>(
//             ctx.GetPlace()),
//         d_bias->template mutable_data<BatchNormParamType<T>>(
//             ctx.GetPlace()),
//         epsilon, saved_mean_data, saved_var_data));
1167
#else
1168
          PADDLE_ENFORCE_GPU_SUCCESS(
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
              platform::dynload::cudnnBatchNormalizationBackward(
                  dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), data_desc_,
                  transformed_x.template data<T>(), data_desc_,
                  transformed_d_y.template data<T>(), data_desc_,
                  transformed_d_x.template mutable_data<T>(ctx.GetPlace()),
                  bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
                  d_scale->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  d_bias->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  epsilon, saved_mean_data, saved_var_data));
1182
#endif
1183 1184 1185 1186 1187 1188 1189 1190
        }

        if (data_layout == DataLayout::kNHWC &&
            compute_format == DataLayout::kNCHW) {
          VLOG(3) << "Transform batchnorm output from NCHW to NHWC";
          TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
              ctx, &transformed_d_x, d_x);
        }
L
lvmengsi 已提交
1191
      } else {
1192
        // This branch call CUDA kernels
1193
        if (compute_format == DataLayout::kNCHW) {
L
lvmengsi 已提交
1194 1195 1196 1197 1198 1199 1200
          if (d_x) {
            BNBackwardData<T, block, framework::DataLayout::kNCHW><<<
                grid2, block, 0, dev_ctx.stream()>>>(
                d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
                saved_mean_data, x->data<T>(), saved_var_data, C, N, H * W * D,
                d_x->data<T>());
          }
1201 1202 1203 1204 1205 1206 1207 1208 1209
          if (d_scale && d_bias) {
            KeBNBackwardScaleBias<
                T, block,
                framework::DataLayout::kNCHW><<<grid2, block, 0, stream>>>(
                d_y->data<T>(), x->data<T>(), saved_mean_data, saved_var_data,
                epsilon, N, C, H * W * D,
                d_scale->data<BatchNormParamType<T>>(),
                d_bias->data<BatchNormParamType<T>>());
          }
L
lvmengsi 已提交
1210 1211
        } else {
          if (d_x) {
L
Lv Mengsi 已提交
1212
            BNBackwardData<T, block, framework::DataLayout::kNHWC><<<
L
lvmengsi 已提交
1213 1214 1215 1216 1217
                grid2, block, 0, dev_ctx.stream()>>>(
                d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
                saved_mean_data, x->data<T>(), saved_var_data, C, N, H * W * D,
                d_x->data<T>());
          }
1218 1219 1220 1221 1222 1223 1224 1225 1226
          if (d_scale && d_bias) {
            KeBNBackwardScaleBias<
                T, block,
                framework::DataLayout::kNHWC><<<grid2, block, 0, stream>>>(
                d_y->data<T>(), x->data<T>(), saved_mean_data, saved_var_data,
                epsilon, N, C, H * W * D,
                d_scale->data<BatchNormParamType<T>>(),
                d_bias->data<BatchNormParamType<T>>());
          }
L
lvmengsi 已提交
1227 1228
        }
      }
1229

1230
#ifdef PADDLE_WITH_HIP
1231 1232
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// clean when exit.
1233
// PADDLE_ENFORCE_GPU_SUCCESS(
1234
//     platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
1235
// PADDLE_ENFORCE_GPU_SUCCESS(
1236
//     platform::dynload::miopenDestroyTensorDescriptor(bn_param_desc_));
1237
#else
1238
      // clean when exit.
1239
      PADDLE_ENFORCE_GPU_SUCCESS(
1240
          platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
1241
      PADDLE_ENFORCE_GPU_SUCCESS(
1242
          platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
1243
#endif
1244 1245 1246 1247 1248 1249 1250 1251 1252
    } else {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_var = ctx.Input<Tensor>("Variance");

      const auto *running_mean_data =
          running_mean->template data<BatchNormParamType<T>>();
      const auto *running_var_data =
          running_var->template data<BatchNormParamType<T>>();

K
Kaipeng Deng 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
      if (is_inplace) {
        auto px = *x;
        inplace_functor(data_layout, px.mutable_data<T>(ctx.GetPlace()),
                        scale->template data<BatchNormParamType<T>>(),
                        bias->template data<BatchNormParamType<T>>(),
                        running_mean_data, running_var_data, epsilon, C,
                        H * W * D, num, x->data<T>(), grid2, block, stream);
      }

1262
      if (compute_format == DataLayout::kNCHW) {
1263
        if (d_x) {
K
Kaipeng Deng 已提交
1264 1265
          KeBNBackwardData<
              T, framework::DataLayout::kNCHW><<<grid1, block, 0, stream>>>(
1266 1267 1268 1269
              d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
              running_var_data, epsilon, C, H * W, num, d_x->data<T>());
        }
        if (d_scale && d_bias) {
K
Kaipeng Deng 已提交
1270 1271 1272
          KeBNBackwardScaleBias<
              T, block,
              framework::DataLayout::kNCHW><<<grid2, block, 0, stream>>>(
1273
              d_y->data<T>(), x->data<T>(), running_mean_data, running_var_data,
Q
qingqing01 已提交
1274
              epsilon, N, C, H * W * D, d_scale->data<BatchNormParamType<T>>(),
1275 1276 1277 1278
              d_bias->data<BatchNormParamType<T>>());
        }
      } else {
        if (d_x) {
K
Kaipeng Deng 已提交
1279 1280
          KeBNBackwardData<
              T, framework::DataLayout::kNHWC><<<grid1, block, 0, stream>>>(
1281 1282 1283 1284
              d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
              running_var_data, epsilon, C, H * W, num, d_x->data<T>());
        }
        if (d_scale && d_bias) {
K
Kaipeng Deng 已提交
1285 1286 1287
          KeBNBackwardScaleBias<
              T, block,
              framework::DataLayout::kNHWC><<<grid2, block, 0, stream>>>(
1288
              d_y->data<T>(), x->data<T>(), running_mean_data, running_var_data,
Q
qingqing01 已提交
1289
              epsilon, N, C, H * W * D, d_scale->data<BatchNormParamType<T>>(),
1290 1291 1292 1293
              d_bias->data<BatchNormParamType<T>>());
        }
      }
    }
Q
Qiao Longfei 已提交
1294 1295 1296
  }
};

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
template <typename T>
class BatchNormDoubleGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *X = ctx.Input<Tensor>("X");
    const auto *Scale = ctx.Input<Tensor>("Scale");
    const auto *dY = ctx.Input<Tensor>("DY");
    const auto *Saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *Saved_variance = ctx.Input<Tensor>("SavedVariance");
    const double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const bool is_test = ctx.Attr<bool>("is_test");

    PADDLE_ENFORCE_EQ(
        is_test, false,
        platform::errors::InvalidArgument(
            "`is_test = True` CANNOT be used in train program. If "
            "you want to use global status in pre_train model, "
            "please set `use_global_stats = True`"));

    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);

    const auto *ddX = ctx.Input<Tensor>("DDX");
    const auto *ddScale = ctx.Input<Tensor>("DDScale");
    const auto *ddBias = ctx.Input<Tensor>("DDBias");

    auto *dX = ctx.Output<Tensor>("DX");
    auto *dScale = ctx.Output<Tensor>("DScale");
    auto *ddY = ctx.Output<Tensor>("DDY");

    NormDoubleGradFunctor<platform::CUDADeviceContext, T>(
        ctx, data_layout, X, Scale, dY, Saved_mean, Saved_variance, epsilon,
        use_global_stats, ddX, ddScale, ddBias, dX, dScale, ddY);
  }
};

Q
Qiao Longfei 已提交
1336 1337 1338 1339
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
1340
namespace plat = paddle::platform;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(
    batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
    ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
    batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>,
    ops::BatchNormGradKernel<plat::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
    batch_norm_grad_grad,
    ops::BatchNormDoubleGradKernel<plat::CUDADeviceContext, float>);
#else
Q
QI JUN 已提交
1353
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
1354
    batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
D
dzhwinter 已提交
1355
    ops::BatchNormKernel<plat::CUDADeviceContext, double>,
K
Kexin Zhao 已提交
1356
    ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
1357
REGISTER_OP_CUDA_KERNEL(
D
dzhwinter 已提交
1358
    batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>,
C
chengduo 已提交
1359 1360
    ops::BatchNormGradKernel<plat::CUDADeviceContext, double>,
    ops::BatchNormGradKernel<plat::CUDADeviceContext, plat::float16>);
1361 1362 1363 1364
REGISTER_OP_CUDA_KERNEL(
    batch_norm_grad_grad,
    ops::BatchNormDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::BatchNormDoubleGradKernel<plat::CUDADeviceContext, double>);
1365
#endif