cast_op.cc 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/cast_op.h"
16

T
tensor-tang 已提交
17
#include <memory>
18

19
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/op_registry.h"
K
Kexin Zhao 已提交
21
#include "paddle/fluid/platform/float16.h"
22 23 24
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#endif
Y
Yu Yang 已提交
25 26 27 28 29 30

namespace paddle {
namespace operators {

class CastOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
31
  void Make() override {
32 33
    AddInput("X", "The input tensor of cast op");
    AddOutput("Out", "The output tensor of cast op");
F
fengjiayi 已提交
34 35
    AddAttr<int>("out_dtype", "output data type");
    AddAttr<int>("in_dtype", "input data type");
36 37 38
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
39 40 41 42
    AddComment(R"DOC(
Cast Operator.

This Operator casts the input tensor to another data type and
T
tensor-tang 已提交
43 44
returns the Output Tensor. It's meaningless if the output dtype equals
the input dtype, but it's fine if you do so.
45 46

)DOC");
Y
Yu Yang 已提交
47 48 49
  }
};

H
hong 已提交
50 51
template <typename T>
class CastOpGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
52
 public:
H
hong 已提交
53
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
54 55

 protected:
56
  void Apply(GradOpPtr<T> grad) const override {
Y
Yu Yang 已提交
57
    grad->SetType("cast");
H
hong 已提交
58 59 60 61
    grad->SetInput("X", this->OutputGrad("Out"));
    grad->SetOutput("Out", this->InputGrad("X"));
    grad->SetAttr("out_dtype", this->GetAttr("in_dtype"));
    grad->SetAttr("in_dtype", this->GetAttr("out_dtype"));
62
    grad->SetAttr("use_mkldnn", this->GetAttr("use_mkldnn"));
Y
Yu Yang 已提交
63 64 65
  }
};

Q
QI JUN 已提交
66 67 68 69 70
class CastOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Z
Zeng Jinle 已提交
71
  void InferShape(framework::InferShapeContext *context) const override {
72 73
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "cast");
    OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "cast");
Z
Zeng Jinle 已提交
74 75 76 77
    context->SetOutputDim("Out", context->GetInputDim("X"));
    context->ShareLoD("X", "Out");
  }

Q
QI JUN 已提交
78 79 80
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    // CastOp kernel's device type is decided by input tensor place
81
    auto *tensor = ctx.Input<framework::LoDTensor>("X");
82 83
    PADDLE_ENFORCE_EQ(tensor->IsInitialized(),
                      true,
84 85 86 87 88
                      platform::errors::PreconditionNotMet(
                          "The tensor of Input(X) is not initialized."));
    auto &tensor_place = tensor->place();
    // NOTE: cuda pinned tensor need to copy its data to target place
    if (platform::is_cuda_pinned_place(tensor_place)) {
89 90 91
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor->dtype()),
          ctx.device_context());
92
    }
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

#ifdef PADDLE_WITH_MKLDNN
    int in_dtype = ctx.Attr<int>("in_dtype");
    int out_dtype = ctx.Attr<int>("out_dtype");

    auto MKLDNNSupportsCast = [&]() -> bool {
      int dtype_fp32 = static_cast<int>(framework::proto::VarType::FP32);
      int dtype_bf16 = static_cast<int>(framework::proto::VarType::BF16);

      if ((in_dtype != dtype_fp32 && in_dtype != dtype_bf16) ||
          (out_dtype != dtype_fp32 && out_dtype != dtype_bf16))
        return false;

      return true;
    };

109 110 111 112
    if (this->CanMKLDNNBeUsed(
            ctx, framework::TransToProtoVarType(tensor->dtype())) &&
        MKLDNNSupportsCast()) {
      return framework::OpKernelType(
113 114 115 116
          framework::TransToProtoVarType(tensor->dtype()),
          ctx.GetPlace(),
          framework::DataLayout::kMKLDNN,
          framework::LibraryType::kMKLDNN);
117
    }
118 119 120 121 122
#endif
#ifdef PADDLE_WITH_MLU
    auto src_type = static_cast<VT::Type>(ctx.Attr<int>("in_dtype"));
    auto dst_type = static_cast<VT::Type>(ctx.Attr<int>("out_dtype"));
    if (src_type == dst_type || MLUSupportsCast(src_type, dst_type)) {
123 124
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor->dtype()), tensor_place);
125 126 127 128 129
    } else {
      VLOG(3) << "MLU not support cast type: "
              << framework::DataTypeToString(src_type)
              << " to type: " << framework::DataTypeToString(dst_type)
              << ", fallbacking to CPU one!";
130 131 132
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor->dtype()),
          platform::CPUPlace());
133
    }
134
#endif
135 136
    return framework::OpKernelType(
        framework::TransToProtoVarType(tensor->dtype()), tensor_place);
Q
QI JUN 已提交
137 138 139
  }
};

Y
Yu Yang 已提交
140 141 142 143
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
L
Leo Chen 已提交
144
using CPU = phi::CPUContext;
145

146
// cast use phi kernel, so no need to REGISTER_OP_CPU_KERNEL here.
147 148
REGISTER_OPERATOR(cast,
                  ops::CastOp,
149 150 151 152
                  ops::CastOpGradMaker<paddle::framework::OpDesc>,
                  ops::CastOpGradMaker<paddle::imperative::OpBase>,
                  ops::CastOpProtoMaker);

153 154 155
// [ why register transfer_dtype_op alias with cast_op? ]
// In case of InterpreterCore, if we reuse cast_op, we cannot distinguish
// which cast_op is inserted by new executor when we do profiling.
156 157
REGISTER_OPERATOR(transfer_dtype,
                  ops::CastOp,
158 159 160 161
                  ops::CastOpGradMaker<paddle::framework::OpDesc>,
                  ops::CastOpGradMaker<paddle::imperative::OpBase>,
                  ops::CastOpProtoMaker);
REGISTER_OP_CPU_KERNEL(
162 163 164 165 166 167 168 169 170 171
    transfer_dtype,
    ops::CastOpKernel<CPU, float>,
    ops::CastOpKernel<CPU, double>,
    ops::CastOpKernel<CPU, int>,
    ops::CastOpKernel<CPU, int64_t>,
    ops::CastOpKernel<CPU, int>,
    ops::CastOpKernel<CPU, int16_t>,
    ops::CastOpKernel<CPU, bool>,
    ops::CastOpKernel<CPU, uint8_t>,
    ops::CastOpKernel<CPU, int8_t>,
172 173 174 175
    ops::CastOpKernel<CPU, paddle::platform::float16>,
    ops::CastOpKernel<CPU, paddle::platform::bfloat16>,
    ops::CastOpKernel<CPU, paddle::platform::complex<float>>,
    ops::CastOpKernel<CPU, paddle::platform::complex<double>>);