beam_search_decode_op_test.cc 5.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/beam_search_decode_op.h"
16

Q
Qiao Longfei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "gtest/gtest.h"

using CPUPlace = paddle::platform::CPUPlace;
using LoD = paddle::framework::LoD;
using LoDTensor = paddle::framework::LoDTensor;
using LoDTensorArray = paddle::framework::LoDTensorArray;

template <typename T>
using BeamSearchDecoder = paddle::operators::BeamSearchDecoder<T>;
template <typename T>
using Sentence = paddle::operators::Sentence<T>;
template <typename T>
using SentenceVector = paddle::operators::SentenceVector<T>;

namespace paddle {
namespace test {

void GenerateExample(const std::vector<size_t>& level_0,
                     const std::vector<size_t>& level_1,
36 37
                     const std::vector<int>& data,
                     LoDTensorArray* ids,
Q
Qiao Longfei 已提交
38
                     LoDTensorArray* scores) {
39 40
  PADDLE_ENFORCE_EQ(level_0.back(),
                    level_1.size() - 1,
41 42 43 44 45 46
                    platform::errors::InvalidArgument(
                        "source level is used to describe candidate set"
                        ", so it's element should less than levle_1 length. "
                        "And the value of source"
                        "level is %d. ",
                        level_1.size() - 1));
47 48
  PADDLE_ENFORCE_EQ(level_1.back(),
                    data.size(),
49 50 51 52
                    platform::errors::InvalidArgument(
                        "the lowest level is used to describe data"
                        ", so it's last element should be data length %d. ",
                        data.size()));
Q
Qiao Longfei 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

  CPUPlace place;

  LoD lod;
  lod.push_back(level_0);
  lod.push_back(level_1);

  // Ids
  LoDTensor tensor_id;
  tensor_id.set_lod(lod);
  tensor_id.Resize({static_cast<int64_t>(data.size())});
  // malloc memory
  int64_t* id_ptr = tensor_id.mutable_data<int64_t>(place);
  for (size_t i = 0; i < data.size(); ++i) {
    id_ptr[i] = static_cast<int64_t>(data.at(i));
  }

  // Scores
  LoDTensor tensor_score;
  tensor_score.set_lod(lod);
  tensor_score.Resize({static_cast<int64_t>(data.size())});
  // malloc memory
  float* score_ptr = tensor_score.mutable_data<float>(place);
  for (size_t i = 0; i < data.size(); ++i) {
    score_ptr[i] = static_cast<float>(data.at(i));
  }

  ids->push_back(tensor_id);
  scores->push_back(tensor_score);
}

}  // namespace test
}  // namespace paddle

87
TEST(BeamSearchDecodeOp, Backtrace) {
Q
Qiao Longfei 已提交
88 89
  CPUPlace place;

90
  // Construct sample data with 5 steps and 2 source sentences
91
  // beam_size = 2, start_id = 0, end_id = 1
Q
Qiao Longfei 已提交
92 93 94
  LoDTensorArray ids;
  LoDTensorArray scores;

95 96 97 98 99
  paddle::test::GenerateExample(std::vector<size_t>{0, 1, 2},
                                std::vector<size_t>{0, 1, 2},
                                std::vector<int>{0, 0},
                                &ids,
                                &scores);  // start with start_id
100 101
  paddle::test::GenerateExample(std::vector<size_t>{0, 1, 2},
                                std::vector<size_t>{0, 2, 4},
102 103 104
                                std::vector<int>{2, 3, 4, 5},
                                &ids,
                                &scores);
105 106
  paddle::test::GenerateExample(std::vector<size_t>{0, 2, 4},
                                std::vector<size_t>{0, 2, 2, 4, 4},
107 108 109
                                std::vector<int>{3, 1, 5, 4},
                                &ids,
                                &scores);
110 111
  paddle::test::GenerateExample(std::vector<size_t>{0, 2, 4},
                                std::vector<size_t>{0, 1, 2, 3, 4},
112 113 114
                                std::vector<int>{1, 1, 3, 5},
                                &ids,
                                &scores);
Q
Qiao Longfei 已提交
115
  paddle::test::GenerateExample(
116
      std::vector<size_t>{0, 2, 4},
117 118
      std::vector<size_t>{0, 0, 0, 2, 2},  // the branchs of the first source
                                           // sentence are pruned since finished
119 120 121
      std::vector<int>{5, 1},
      &ids,
      &scores);
Q
Qiao Longfei 已提交
122

123 124
  ASSERT_EQ(ids.size(), 5UL);
  ASSERT_EQ(scores.size(), 5UL);
Q
Qiao Longfei 已提交
125

126
  BeamSearchDecoder<float> helper(2, 1);  // beam_size = 2, end_id = 1
Q
Qiao Longfei 已提交
127 128 129

  LoDTensor id_tensor;
  LoDTensor score_tensor;
130
  helper.Backtrace(ids, scores, &id_tensor, &score_tensor);
Q
Qiao Longfei 已提交
131 132

  LoD lod = id_tensor.lod();
133
  std::vector<size_t> expect_source_lod = {0, 2, 4};
Q
Qiao Longfei 已提交
134
  EXPECT_EQ(lod[0], expect_source_lod);
135
  std::vector<size_t> expect_sentence_lod = {0, 4, 7, 12, 17};
Q
Qiao Longfei 已提交
136
  EXPECT_EQ(lod[1], expect_sentence_lod);
137 138
  std::vector<int> expect_data = {
      0, 2, 3, 1, 0, 2, 1, 0, 4, 5, 3, 5, 0, 4, 5, 3, 1};
Q
Qiao Longfei 已提交
139 140 141 142 143 144 145 146 147 148
  ASSERT_EQ(id_tensor.dims()[0], static_cast<int64_t>(expect_data.size()));
  for (size_t i = 0; i < expect_data.size(); ++i) {
    ASSERT_EQ(id_tensor.data<int64_t>()[i],
              static_cast<int64_t>(expect_data[i]));
  }
  for (int64_t i = 0; i < id_tensor.dims()[0]; ++i) {
    ASSERT_EQ(score_tensor.data<float>()[i],
              static_cast<float>(id_tensor.data<int64_t>()[i]));
  }
}