matmul_mkldnn_op.cc 24.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
17
#include "paddle/phi/backends/onednn/matmul_utils.h"
18 19 20 21 22 23 24 25 26 27 28 29
#include "paddle/phi/kernels/funcs/blas/blas.h"

namespace {
using dnnl::memory;
using paddle::framework::ExecutionContext;
using paddle::framework::GradVarName;
using phi::OneDNNContext;
using phi::vectorize;
using phi::funcs::OneDNNGetDataType;

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
30
phi::DenseTensor FoldOuterDims(const phi::DenseTensor &input) {
31 32 33 34 35 36 37 38 39 40 41 42
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
43 44
phi::DenseTensor FoldFirstAndLastDims(const OneDNNContext &dev_ctx,
                                      const phi::DenseTensor *input) {
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  auto input_dims = vectorize(input->dims());
  if (input_dims.size() != 3) {
    return *input;
  }

  phi::DenseTensor output;
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

  auto output_dims = vectorize(output.dims());

  memory::data_type input_type = phi::funcs::ToOneDNNDataType(input->dtype());
  phi::funcs::ReorderOneDNNHandler reorder_handler(
      output_dims, input->dtype(), input_type, dev_ctx.GetEngine());

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
      memory::format_tag::abc, phi::funcs::to_void_cast(input->data<T>()));
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

  auto &astream = OneDNNContext::tls().get_stream();
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

template <typename XT, typename YT, typename OT>
75
class MatMulV1OneDNNHandler
76 77
    : public phi::funcs::OneDNNHandlerNoCachingT<XT, dnnl::matmul> {
 public:
78
  MatMulV1OneDNNHandler(const ExecutionContext &ctx,
79
                        const dnnl::engine engine,
80
                        phi::Place cpu_place,
81 82 83
                        const std::vector<int64_t> &x_org_dims,
                        bool trans_x,
                        const std::vector<int64_t> &y_org_dims,
84
                        bool trans_y)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
      : phi::funcs::OneDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                              cpu_place) {
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

111 112
    if (trans_x) {
      x_strides.insert(x_strides.end(), {M * K, 1, M});
113
    } else {
114
      x_strides.insert(x_strides.end(), {M * K, K, 1});
115
    }
116 117
    if (trans_y) {
      y_strides.insert(y_strides.end(), {N * K, 1, K});
118
    } else {
119
      y_strides.insert(y_strides.end(), {N * K, N, 1});
120 121 122 123 124 125 126
    }
    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});

    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
127 128
      x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }

    auto x_md =
        memory::desc(x_dims, phi::funcs::OneDNNGetDataType<XT>(), x_strides);
    auto y_md =
        memory::desc(y_dims, phi::funcs::OneDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(
        out_ddims, phi::funcs::OneDNNGetDataType<OT>(), out_strides);

    const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx);

    this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md);
  }

  float ComputeOutputScale(const ExecutionContext &ctx) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
    if (ctx.HasAttr("Scale_x") && ctx.HasAttr("Scale_y") &&
        ctx.HasAttr("Scale_out")) {
      float scale_x = ctx.Attr<float>("Scale_x");
      float scale_y = ctx.Attr<float>("Scale_y");
      bool force_fp32_out = ctx.HasAttr("force_fp32_output")
                                ? ctx.Attr<bool>("force_fp32_output")
                                : false;
      float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
      alpha *= scale_out / (scale_x * scale_y);
    }
    return alpha;
  }

  dnnl::primitive_attr CreateMatmulAttrs(const ExecutionContext &ctx) {
    dnnl::primitive_attr matmul_attrs;
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      matmul_attrs.set_output_scales(0, {scale_out});
    }
    return matmul_attrs;
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const phi::DenseTensor *input) {
    const YT *input_data = input->data<YT>();
    return this->AcquireMemoryFromPrimitive(
        this->fwd_pd_->weights_desc(),
        phi::funcs::to_void_cast<YT>(input_data));
  }

  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor *output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence phi::DenseTensor size is bigger that
    // dst memory primitive size. So would we request less memory that is there
    // and it triggers an assertion.  So as there is no 'any' format here we can
    // leave default size of phi::DenseTensor as computed in ComputeInferShape
    OT *ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
  }
};

template <typename XT, typename YT, typename OT>
189
class MatMulOneDNNHandler
190 191
    : public phi::funcs::OneDNNHandlerNoCachingT<XT, dnnl::matmul> {
 public:
192 193
  MatMulOneDNNHandler(const dnnl::engine engine,
                      phi::Place cpu_place,
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
                      phi::DenseTensor *x,
                      bool trans_x,
                      phi::DenseTensor *y,
                      bool trans_y,
                      phi::DenseTensor *out,
                      float scale)
      : phi::funcs::OneDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                              cpu_place) {
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x->dims(), 0, trans_x);
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y->dims(), 0, trans_y);

    memory::dim x_bs = mat_dim_x.batch_size_;
    memory::dim y_bs = mat_dim_y.batch_size_;

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    memory::dims x_strides =
218
        trans_x ? memory::dims{M * K, 1, M} : memory::dims{M * K, K, 1};
219 220

    memory::dims y_strides =
221
        trans_y ? memory::dims{N * K, 1, K} : memory::dims{N * K, N, 1};
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    memory::dims out_strides = memory::dims{M * N, N, 1};

    auto x_md = memory::desc(x_dims, OneDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, OneDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_dims, OneDNNGetDataType<OT>(), out_strides);

    dnnl::primitive_attr attrs;
    if (scale != 1.0f) attrs.set_output_scales(0, {scale});

    this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const phi::DenseTensor *input) {
    const YT *input_data = input->data<YT>();
    return this->AcquireMemoryFromPrimitive(
        this->fwd_pd_->weights_desc(),
        phi::funcs::to_void_cast<YT>(input_data));
  }

  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor *output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence phi::DenseTensor size is bigger that
    // dst memory primitive size. So would we request less memory that is there
    // and it triggers an assertion.  So as there is no 'any' format here we can
    // leave default size of phi::DenseTensor as computed in ComputeInferShape
    OT *ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
  }
};

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
260
void ReshapeTensorToMatrixSequence(
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    phi::DenseTensor *x, const phi::funcs::MatDescriptor &descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
289 290 291 292 293
void ReshapeXYOutToMatrixSequence(phi::DenseTensor *x,
                                  phi::DenseTensor *y,
                                  phi::DenseTensor *out,
                                  bool trans_x,
                                  bool trans_y) {
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
  auto x_dim = phi::funcs::RowMatrixDimsFromVector(x->dims());
  auto y_dim = phi::funcs::ColumnMatrixDimsFromVector(y->dims());
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_,
                 mat_dim_y.width_});
  }

  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
}

template <typename T, typename T_out>
311
void ExecuteMatMulV1(const ExecutionContext &ctx,
312 313 314 315 316 317 318 319
                     const dnnl::engine onednn_engine,
                     const phi::DenseTensor *x,
                     const std::vector<int64_t> &x_dims,
                     bool trans_x,
                     const phi::DenseTensor *y,
                     const std::vector<int64_t> &y_dims,
                     bool trans_y,
                     phi::DenseTensor *out) {
320 321
  MatMulV1OneDNNHandler<T, T, T_out> handler(
      ctx, onednn_engine, ctx.GetPlace(), x_dims, trans_x, y_dims, trans_y);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
  const auto src_memory_p = handler.AcquireSrcMemory(x);
  const auto weights_memory_p = handler.AcquireWeightsMemory(y);
  const auto dst_memory_p = handler.AcquireDstMemory(out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto &astream = OneDNNContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

337 338 339
  auto reshape_dims = out->dims().size() != 0 ? vectorize(out->dims())
                                              : std::vector<int64_t>{1};
  out->set_mem_desc(dst_memory_p->get_desc().reshape(reshape_dims));
340 341 342 343 344 345 346 347 348 349
}

template <typename T>
class MatMulMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext &ctx) const override {
    if (ctx.HasAttr("head_number")) {
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"),
          1,
350
          phi::errors::Unimplemented(
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
              "oneDNN matmul doesn't support multiple heads. Expected "
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
    }
    constexpr bool is_int8 = phi::funcs::is_int8<T>();
    constexpr bool is_bfloat16 = phi::funcs::is_bfloat16<T>();
    const bool force_fp32_output = ctx.HasAttr("force_fp32_output")
                                       ? ctx.Attr<bool>("force_fp32_output")
                                       : false;

    const auto &dev_ctx = ctx.template device_context<OneDNNContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();

    auto *x = ctx.Input<phi::DenseTensor>("X");
    auto *y = ctx.Input<phi::DenseTensor>("Y");
    auto *out = ctx.Output<phi::DenseTensor>("Out");
367 368
    bool trans_x = ctx.Attr<bool>("transpose_X");
    bool trans_y = ctx.Attr<bool>("transpose_Y");
369

370 371
    auto x_dims = vectorize(x->dims());
    auto y_dims = vectorize(y->dims());
372 373 374 375 376 377 378 379 380 381

    int ndims = std::max(x_dims.size(), y_dims.size());
    ndims = std::max(ndims, 3);

    std::vector<int64_t> x_bd_dims(ndims, 1);
    std::vector<int64_t> y_bd_dims(ndims, 1);

    CalculateMatrixDims(ctx, x_dims, y_dims, &x_bd_dims, &y_bd_dims, out);

    if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
382
      ExecuteMatMulV1<T, float>(ctx,
383 384 385 386 387 388 389 390 391
                                onednn_engine,
                                x,
                                x_bd_dims,
                                trans_x,
                                y,
                                y_bd_dims,
                                trans_y,
                                out);
    } else if (is_bfloat16) {
392
      ExecuteMatMulV1<T, paddle::platform::bfloat16>(ctx,
393 394 395 396 397 398 399 400 401
                                                     onednn_engine,
                                                     x,
                                                     x_bd_dims,
                                                     trans_x,
                                                     y,
                                                     y_bd_dims,
                                                     trans_y,
                                                     out);
    } else {
402
      ExecuteMatMulV1<T, int8_t>(ctx,
403 404 405 406 407 408 409 410 411 412 413 414
                                 onednn_engine,
                                 x,
                                 x_bd_dims,
                                 trans_x,
                                 y,
                                 y_bd_dims,
                                 trans_y,
                                 out);
    }
  }

 private:
415
  void CalculateMatrixDims(const ExecutionContext &ctx UNUSED,
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
                           const std::vector<int64_t> &x_dims,
                           const std::vector<int64_t> &y_dims,
                           std::vector<int64_t> *x_bd_dims,
                           std::vector<int64_t> *y_bd_dims,
                           phi::DenseTensor *out) const {
    if (x_dims.size() == 1) {
      (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[0];
    } else if (x_dims.size() == 2) {
      (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[1];
      (*x_bd_dims)[(*x_bd_dims).size() - 2] = x_dims[0];
    } else {
      for (size_t i = 0; i < x_dims.size(); ++i) {
        (*x_bd_dims)[(*x_bd_dims).size() - x_dims.size() + i] = x_dims[i];
      }
    }
    if (y_dims.size() == 1) {
      (*y_bd_dims)[(*x_bd_dims).size() - 2] = y_dims[0];
    } else if (y_dims.size() == 2) {
      (*y_bd_dims)[(*y_bd_dims).size() - 1] = y_dims[1];
      (*y_bd_dims)[(*y_bd_dims).size() - 2] = y_dims[0];
    } else {
      for (size_t i = 0; i < y_dims.size(); ++i) {
        (*y_bd_dims)[(*y_bd_dims).size() - y_dims.size() + i] = y_dims[i];
      }
    }

442
    if (x_dims.size() > 2 && y_dims.size() > 2) {
443 444 445 446 447 448
      auto out_dims = vectorize(out->dims());
      for (size_t i = 0; i < (*x_bd_dims).size() - 2; ++i) {
        PADDLE_ENFORCE_EQ(
            (*x_bd_dims)[i] == (*y_bd_dims)[i] || (*x_bd_dims)[i] == 1 ||
                (*y_bd_dims)[i] == 1,
            true,
449
            phi::errors::InvalidArgument(
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
                "phi::DenseTensor dimensions are incorrect for broadcasting."
                "Dimensions in X and Y must be same or equal to 1, but "
                "received x_dim[%d]=%d and y_dims[%d]= %d",
                i,
                (*x_bd_dims)[i],
                i,
                (*y_bd_dims)[i]));
        (out_dims)[i] = std::max((*x_bd_dims)[i], (*y_bd_dims)[i]);
      }
      out->Resize(phi::make_ddim((out_dims)));
    }
  }
};

template <typename T>
class MatMulGradMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext &ctx) const override {
    if (ctx.HasAttr("head_number")) {
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"),
          1,
472
          phi::errors::Unimplemented(
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
              "oneDNN matmul doesn't support multiple heads. Expected "
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
    }

    const auto &dev_ctx = ctx.template device_context<OneDNNContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();

    auto x = *ctx.Input<phi::DenseTensor>("X");
    auto y = *ctx.Input<phi::DenseTensor>("Y");
    auto dout =
        *ctx.Input<phi::DenseTensor>(paddle::framework::GradVarName("Out"));
    auto *dx =
        ctx.Output<phi::DenseTensor>(paddle::framework::GradVarName("X"));
    auto *dy =
        ctx.Output<phi::DenseTensor>(paddle::framework::GradVarName("Y"));

490 491
    bool transpose_x = ctx.Attr<bool>("transpose_X");
    bool transpose_y = ctx.Attr<bool>("transpose_Y");
492 493 494

    ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

495
    phi::DDim dx_dims;
496 497 498 499 500 501 502
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

503
    phi::DDim dy_dims;
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      this->ExecuteMatMulGrad(
          ctx, dev_ctx, onednn_engine, &y, true, true, &dout, true, false, dx);
      this->ExecuteMatMulGrad(
          ctx, dev_ctx, onednn_engine, &dout, true, true, &x, true, false, dy);
    } else if (transpose_x) {
      this->ExecuteMatMulGrad(ctx,
                              dev_ctx,
                              onednn_engine,
                              &y,
                              false,
                              false,
                              &dout,
                              true,
                              false,
                              dx);
      this->ExecuteMatMulGrad(ctx,
                              dev_ctx,
                              onednn_engine,
                              &x,
                              false,
                              false,
                              &dout,
                              false,
                              true,
                              dy);
    } else if (transpose_y) {
      this->ExecuteMatMulGrad(ctx,
                              dev_ctx,
                              onednn_engine,
                              &dout,
                              false,
                              false,
                              &y,
                              false,
                              true,
                              dx);
      this->ExecuteMatMulGrad(
          ctx, dev_ctx, onednn_engine, &dout, true, true, &x, false, true, dy);
    } else {
      this->ExecuteMatMulGrad(ctx,
                              dev_ctx,
                              onednn_engine,
                              &dout,
                              false,
                              false,
                              &y,
                              true,
                              false,
                              dx);
      this->ExecuteMatMulGrad(
          ctx, dev_ctx, onednn_engine, &x, true, true, &dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
        dx->set_mem_desc(x.mem_desc());
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
        dy->set_mem_desc(y.mem_desc());
      }
    }
  }

 private:
  void ExecuteMatMulGrad(const ExecutionContext &ctx,
                         const OneDNNContext &dev_ctx,
                         const dnnl::engine &engine,
                         phi::DenseTensor *x,
                         bool trans_x,
                         bool is_fold_init_dims_x,
                         phi::DenseTensor *y,
                         bool trans_y,
                         bool is_fold_init_dims_y,
                         phi::DenseTensor *out) const {
    // gradient is calculated in a different way when broadcasting is used
    bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                        out->dims().size() == 2;

    phi::DenseTensor x_combined, y_combined;
595
    if (need_combine) {
596 597 598 599
      x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                       : FoldFirstAndLastDims<T>(dev_ctx, x);
      y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                       : FoldFirstAndLastDims<T>(dev_ctx, y);
600 601 602
    } else {
      x_combined = *x;
      y_combined = *y;
603 604
    }

605
    MatMulOneDNNHandler<T, T, T> handler(engine,
606 607 608 609 610 611
                                         ctx.GetPlace(),
                                         &x_combined,
                                         trans_x,
                                         &y_combined,
                                         trans_y,
                                         out,
612
                                         ctx.Attr<float>("alpha"));
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

    const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
    const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
    const auto dst_memory_p = handler.AcquireDstMemory(out);

    auto matmul_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto &astream = OneDNNContext::tls().get_stream();
    matmul_p->execute(astream, matmul_args);
    astream.wait();

    out->set_mem_desc(
        dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims())));
  }
};

}  // anonymous namespace

REGISTER_OP_KERNEL(matmul,
                   MKLDNN,
                   ::phi::CPUPlace,
                   MatMulMKLDNNKernel<float>,
                   MatMulMKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulMKLDNNKernel<int8_t>,
                   MatMulMKLDNNKernel<uint8_t>);

REGISTER_OP_KERNEL(matmul_grad,
                   MKLDNN,
                   ::phi::CPUPlace,
                   MatMulGradMKLDNNKernel<float>,
                   MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);