dist_transformer.py 61.9 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

X
Xin Pan 已提交
17 18 19 20
import numpy as np
import argparse
import time
import math
Y
fix ut  
yi.wu 已提交
21 22 23 24 25 26 27 28 29 30 31 32
import os
import sys
import six
import argparse
import ast
import multiprocessing
import time
from functools import partial
from os.path import expanduser
import glob
import random
import tarfile
X
Xin Pan 已提交
33 34 35

import paddle
import paddle.fluid as fluid
Y
fix ut  
yi.wu 已提交
36
import paddle.fluid.layers as layers
X
Xin Pan 已提交
37
from paddle.fluid import core
Y
fix ut  
yi.wu 已提交
38
from test_dist_base import TestDistRunnerBase, runtime_main
M
minqiyang 已提交
39
import paddle.compat as cpt
Y
fix ut  
yi.wu 已提交
40 41 42 43 44 45 46 47
from paddle.compat import long_type

import hashlib

from paddle.fluid.transpiler.details import program_to_code

const_para_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(0.001))
const_bias_attr = const_para_attr
X
Xin Pan 已提交
48 49 50 51 52 53

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


Y
fix ut  
yi.wu 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#from transformer_config import ModelHyperParams, TrainTaskConfig, merge_cfg_from_list
class TrainTaskConfig(object):
    # only support GPU currently
    use_gpu = True
    # the epoch number to train.
    pass_num = 1
    # the number of sequences contained in a mini-batch.
    # deprecated, set batch_size in args.
    batch_size = 20
    # the hyper parameters for Adam optimizer.
    # This static learning_rate will be multiplied to the LearningRateScheduler
    # derived learning rate the to get the final learning rate.
    learning_rate = 1
    beta1 = 0.9
    beta2 = 0.98
    eps = 1e-9
    # the parameters for learning rate scheduling.
    warmup_steps = 4000
    # the weight used to mix up the ground-truth distribution and the fixed
    # uniform distribution in label smoothing when training.
    # Set this as zero if label smoothing is not wanted.
    label_smooth_eps = 0.1
    # the directory for saving trained models.
    model_dir = "trained_models"
    # the directory for saving checkpoints.
    ckpt_dir = "trained_ckpts"
    # the directory for loading checkpoint.
    # If provided, continue training from the checkpoint.
    ckpt_path = None
    # the parameter to initialize the learning rate scheduler.
    # It should be provided if use checkpoints, since the checkpoint doesn't
    # include the training step counter currently.
    start_step = 0
X
Xin Pan 已提交
87

Y
fix ut  
yi.wu 已提交
88
    check_acc = True
X
Xin Pan 已提交
89

Y
fix ut  
yi.wu 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103
    data_path = expanduser("~") + (
        "/.cache/paddle/dataset/test_dist_transformer/")
    src_vocab_fpath = data_path + "vocab.bpe.32000"
    trg_vocab_fpath = data_path + "vocab.bpe.32000"
    train_file_pattern = data_path + "train.tok.clean.bpe.32000.en-de"
    val_file_pattern = data_path + "newstest2013.tok.bpe.32000.en-de"
    pool_size = 2000
    sort_type = None
    local = True
    shuffle = False
    shuffle_batch = False
    special_token = ['<s>', '<e>', '<unk>']
    token_delimiter = ' '
    use_token_batch = False
X
Xin Pan 已提交
104 105


Y
fix ut  
yi.wu 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
class InferTaskConfig(object):
    use_gpu = True
    # the number of examples in one run for sequence generation.
    batch_size = 10
    # the parameters for beam search.
    beam_size = 5
    max_out_len = 256
    # the number of decoded sentences to output.
    n_best = 1
    # the flags indicating whether to output the special tokens.
    output_bos = False
    output_eos = False
    output_unk = True
    # the directory for loading the trained model.
    model_path = "trained_models/pass_1.infer.model"
X
Xin Pan 已提交
121 122


Y
fix ut  
yi.wu 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
class ModelHyperParams(object):
    # These following five vocabularies related configurations will be set
    # automatically according to the passed vocabulary path and special tokens.
    # size of source word dictionary.
    src_vocab_size = 10000
    # size of target word dictionay
    trg_vocab_size = 10000
    # index for <bos> token
    bos_idx = 0
    # index for <eos> token
    eos_idx = 1
    # index for <unk> token
    unk_idx = 2
    # max length of sequences deciding the size of position encoding table.
    # Start from 1 and count start and end tokens in.
    max_length = 256
X
Xin Pan 已提交
139 140 141 142 143
    # the dimension for word embeddings, which is also the last dimension of
    # the input and output of multi-head attention, position-wise feed-forward
    # networks, encoder and decoder.
    d_model = 512
    # size of the hidden layer in position-wise feed-forward networks.
Y
fix ut  
yi.wu 已提交
144
    d_inner_hid = 2048
X
Xin Pan 已提交
145 146 147 148 149 150 151 152 153
    # the dimension that keys are projected to for dot-product attention.
    d_key = 64
    # the dimension that values are projected to for dot-product attention.
    d_value = 64
    # number of head used in multi-head attention.
    n_head = 8
    # number of sub-layers to be stacked in the encoder and decoder.
    n_layer = 6
    # dropout rate used by all dropout layers.
Y
fix ut  
yi.wu 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    dropout = 0.0  # no random
    # random seed used in dropout for CE.
    dropout_seed = None
    # the flag indicating whether to share embedding and softmax weights.
    # vocabularies in source and target should be same for weight sharing.
    weight_sharing = True


def merge_cfg_from_list(cfg_list, g_cfgs):
    """
    Set the above global configurations using the cfg_list.
    """
    assert len(cfg_list) % 2 == 0
    for key, value in zip(cfg_list[0::2], cfg_list[1::2]):
        for g_cfg in g_cfgs:
            if hasattr(g_cfg, key):
                try:
                    value = eval(value)
                except Exception:  # for file path
                    pass
                setattr(g_cfg, key, value)
                break


# The placeholder for batch_size in compile time. Must be -1 currently to be
# consistent with some ops' infer-shape output in compile time, such as the
# sequence_expand op used in beamsearch decoder.
batch_size = -1
# The placeholder for squence length in compile time.
seq_len = ModelHyperParams.max_length
# Here list the data shapes and data types of all inputs.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
input_descs = {
    # The actual data shape of src_word is:
    # [batch_size * max_src_len_in_batch, 1]
    "src_word": [(batch_size, seq_len, long_type(1)), "int64", 2],
    # The actual data shape of src_pos is:
    # [batch_size * max_src_len_in_batch, 1]
    "src_pos": [(batch_size, seq_len, long_type(1)), "int64"],
    # This input is used to remove attention weights on paddings in the
    # encoder.
    # The actual data shape of src_slf_attn_bias is:
    # [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch]
    "src_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
                           seq_len), "float32"],
    # The actual data shape of trg_word is:
    # [batch_size * max_trg_len_in_batch, 1]
    "trg_word": [(batch_size, seq_len, long_type(1)), "int64",
                 2],  # lod_level is only used in fast decoder.
    # The actual data shape of trg_pos is:
    # [batch_size * max_trg_len_in_batch, 1]
    "trg_pos": [(batch_size, seq_len, long_type(1)), "int64"],
    # This input is used to remove attention weights on paddings and
    # subsequent words in the decoder.
    # The actual data shape of trg_slf_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch]
    "trg_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
                           seq_len), "float32"],
    # This input is used to remove attention weights on paddings of the source
    # input in the encoder-decoder attention.
    # The actual data shape of trg_src_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch]
    "trg_src_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
                           seq_len), "float32"],
    # This input is used in independent decoder program for inference.
    # The actual data shape of enc_output is:
    # [batch_size, max_src_len_in_batch, d_model]
    "enc_output": [(batch_size, seq_len, ModelHyperParams.d_model), "float32"],
    # The actual data shape of label_word is:
    # [batch_size * max_trg_len_in_batch, 1]
    "lbl_word": [(batch_size * seq_len, long_type(1)), "int64"],
    # This input is used to mask out the loss of paddding tokens.
    # The actual data shape of label_weight is:
    # [batch_size * max_trg_len_in_batch, 1]
    "lbl_weight": [(batch_size * seq_len, long_type(1)), "float32"],
    # These inputs are used to change the shape tensor in beam-search decoder.
    "trg_slf_attn_pre_softmax_shape_delta": [(long_type(2), ), "int32"],
    "trg_slf_attn_post_softmax_shape_delta": [(long_type(4), ), "int32"],
    "init_score": [(batch_size, long_type(1)), "float32"],
}

# Names of word embedding table which might be reused for weight sharing.
word_emb_param_names = (
    "src_word_emb_table",
    "trg_word_emb_table", )
# Names of position encoding table which will be initialized externally.
pos_enc_param_names = (
    "src_pos_enc_table",
    "trg_pos_enc_table", )
# separated inputs for different usages.
encoder_data_input_fields = (
    "src_word",
    "src_pos",
    "src_slf_attn_bias", )
decoder_data_input_fields = (
    "trg_word",
    "trg_pos",
    "trg_slf_attn_bias",
    "trg_src_attn_bias",
    "enc_output", )
label_data_input_fields = (
    "lbl_word",
    "lbl_weight", )
# In fast decoder, trg_pos (only containing the current time step) is generated
# by ops and trg_slf_attn_bias is not needed.
fast_decoder_data_input_fields = (
    "trg_word",
    "init_score",
    "trg_src_attn_bias", )

# fast_decoder_util_input_fields = (
#     "trg_slf_attn_pre_softmax_shape_delta",
#     "trg_slf_attn_post_softmax_shape_delta", )

X
Xin Pan 已提交
269

Y
fix ut  
yi.wu 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
#from optim import LearningRateScheduler
class LearningRateScheduler(object):
    """
    Wrapper for learning rate scheduling as described in the Transformer paper.
    LearningRateScheduler adapts the learning rate externally and the adapted
    learning rate will be feeded into the main_program as input data.
    """

    def __init__(self,
                 d_model,
                 warmup_steps,
                 learning_rate=0.001,
                 current_steps=0,
                 name="learning_rate"):
        self.current_steps = current_steps
        self.warmup_steps = warmup_steps
        self.d_model = d_model
        self.static_lr = learning_rate
        self.learning_rate = layers.create_global_var(
            name=name,
            shape=[1],
            value=float(learning_rate),
            dtype="float32",
            persistable=True)

    def update_learning_rate(self):
        self.current_steps += 1
        lr_value = np.power(self.d_model, -0.5) * np.min([
            np.power(self.current_steps, -0.5),
            np.power(self.warmup_steps, -1.5) * self.current_steps
        ]) * self.static_lr
        return np.array([lr_value], dtype="float32")
X
Xin Pan 已提交
302

Y
fix ut  
yi.wu 已提交
303 304 305 306 307 308 309 310 311 312

#from transformer_train import train_loop
def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
                   is_label=False,
                   return_attn_bias=True,
                   return_max_len=True,
                   return_num_token=False):
X
Xin Pan 已提交
313 314
    """
    Pad the instances to the max sequence length in batch, and generate the
Y
fix ut  
yi.wu 已提交
315
    corresponding position data and attention bias.
X
Xin Pan 已提交
316
    """
Y
fix ut  
yi.wu 已提交
317 318
    return_list = []
    max_len = max(len(inst) for inst in insts)
M
minqiyang 已提交
319 320 321
    num_token = six.moves.reduce(
        lambda x, y: x + y,
        [len(inst) for inst in insts]) if return_num_token else 0
Y
fix ut  
yi.wu 已提交
322 323 324 325 326 327 328 329 330 331 332
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
    if is_label:  # label weight
        inst_weight = np.array(
            [[1.] * len(inst) + [0.] * (max_len - len(inst)) for inst in insts])
        return_list += [inst_weight.astype("float32").reshape([-1, 1])]
    else:  # position data
        inst_pos = np.array([
M
minqiyang 已提交
333
            list(range(1, len(inst) + 1)) + [0] * (max_len - len(inst))
Y
fix ut  
yi.wu 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
            for inst in insts
        ])
        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
            slf_attn_bias_data = np.triu(slf_attn_bias_data,
                                         1).reshape([-1, 1, max_len, max_len])
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
    if return_num_token:
        return_list += [num_token]
    return return_list if len(return_list) > 1 else return_list[0]


def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx,
                        n_head, d_model):
    """
    Put all padded data needed by training into a dict.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    src_word = src_word.reshape(-1, src_max_len, 1)
    src_pos = src_pos.reshape(-1, src_max_len, 1)
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
    trg_word = trg_word.reshape(-1, trg_max_len, 1)
    trg_pos = trg_pos.reshape(-1, trg_max_len, 1)
X
Xin Pan 已提交
375 376 377 378

    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")

Y
fix ut  
yi.wu 已提交
379 380 381 382 383 384 385 386 387 388 389
    lbl_word, lbl_weight, num_token = pad_batch_data(
        [inst[2] for inst in insts],
        trg_pad_idx,
        n_head,
        is_target=False,
        is_label=True,
        return_attn_bias=False,
        return_max_len=False,
        return_num_token=True)

    data_input_dict = dict(
M
minqiyang 已提交
390 391 392 393 394
        list(
            zip(data_input_names, [
                src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
                trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
            ])))
Y
fix ut  
yi.wu 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    return data_input_dict, np.asarray([num_token], dtype="float32")


def read_multiple(reader, count, clip_last=True):
    """
    Stack data from reader for multi-devices.
    """

    def __impl__():
        res = []
        for item in reader():
            res.append(item)
            if len(res) == count:
                yield res
                res = []
        if len(res) == count:
            yield res
        elif not clip_last:
            data = []
            for item in res:
                data += item
            if len(data) > count:
                inst_num_per_part = len(data) // count
                yield [
                    data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
                    for i in range(count)
                ]

    return __impl__


def split_data(data, num_part):
    """
    Split data for each device.
    """
    if len(data) == num_part:
        return data
    data = data[0]
    inst_num_per_part = len(data) // num_part
X
Xin Pan 已提交
434
    return [
Y
fix ut  
yi.wu 已提交
435 436
        data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
        for i in range(num_part)
X
Xin Pan 已提交
437 438 439
    ]


Y
fix ut  
yi.wu 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
def test_context(train_progm, avg_cost, train_exe, dev_count, data_input_names,
                 sum_cost, token_num):
    # Context to do validation.
    test_program = train_progm.clone()
    with fluid.program_guard(test_program):
        test_program = fluid.io.get_inference_program([avg_cost])

    val_data = DataReader(
        src_vocab_fpath=TrainTaskConfig.src_vocab_fpath,
        trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath,
        fpattern=TrainTaskConfig.val_file_pattern,
        token_delimiter=TrainTaskConfig.token_delimiter,
        use_token_batch=TrainTaskConfig.use_token_batch,
        batch_size=TrainTaskConfig.batch_size *
        (1 if TrainTaskConfig.use_token_batch else dev_count),
        pool_size=TrainTaskConfig.pool_size,
        sort_type=TrainTaskConfig.sort_type,
        start_mark=TrainTaskConfig.special_token[0],
        end_mark=TrainTaskConfig.special_token[1],
        unk_mark=TrainTaskConfig.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
        clip_last_batch=False,
        shuffle=False,
        shuffle_batch=False)

    build_strategy = fluid.BuildStrategy()

    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1

    test_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
        main_program=test_program,
        share_vars_from=train_exe,
        build_strategy=build_strategy,
        exec_strategy=strategy)

    def test(exe=test_exe):
        test_total_cost = 0
        test_total_token = 0
        test_data = read_multiple(
            reader=val_data.batch_generator,
            count=dev_count if TrainTaskConfig.use_token_batch else 1)
        for batch_id, data in enumerate(test_data()):
            feed_list = []
            for place_id, data_buffer in enumerate(
                    split_data(
                        data, num_part=dev_count)):
                data_input_dict, _ = prepare_batch_input(
                    data_buffer, data_input_names, ModelHyperParams.eos_idx,
                    ModelHyperParams.eos_idx, ModelHyperParams.n_head,
                    ModelHyperParams.d_model)
                feed_list.append(data_input_dict)

            outs = exe.run(feed=feed_list,
                           fetch_list=[sum_cost.name, token_num.name])
            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            test_total_cost += sum_cost_val.sum()
            test_total_token += token_num_val.sum()
        test_avg_cost = test_total_cost / test_total_token
        test_ppl = np.exp([min(test_avg_cost, 100)])
        return test_avg_cost, test_ppl

    return test


def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
               token_num, predict):
    # Initialize the parameters.
    if TrainTaskConfig.ckpt_path:
        lr_scheduler.current_steps = TrainTaskConfig.start_step
    else:
        exe.run(fluid.framework.default_startup_program())

    train_data = DataReader(
        src_vocab_fpath=TrainTaskConfig.src_vocab_fpath,
        trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath,
        fpattern=TrainTaskConfig.train_file_pattern,
        token_delimiter=TrainTaskConfig.token_delimiter,
        use_token_batch=TrainTaskConfig.use_token_batch,
        batch_size=TrainTaskConfig.batch_size *
        (1 if TrainTaskConfig.use_token_batch else dev_count),
        pool_size=TrainTaskConfig.pool_size,
        sort_type=TrainTaskConfig.sort_type,
        shuffle=TrainTaskConfig.shuffle,
        shuffle_batch=TrainTaskConfig.shuffle_batch,
        start_mark=TrainTaskConfig.special_token[0],
        end_mark=TrainTaskConfig.special_token[1],
        unk_mark=TrainTaskConfig.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
        clip_last_batch=False)
    train_data = read_multiple(
        reader=train_data.batch_generator,
        count=dev_count if TrainTaskConfig.use_token_batch else 1)

    build_strategy = fluid.BuildStrategy()
    # Since the token number differs among devices, customize gradient scale to
    # use token average cost among multi-devices. and the gradient scale is
    # `1 / token_number` for average cost.
    build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized

    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1

    train_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
        loss_name=sum_cost.name,
        main_program=train_progm,
        build_strategy=build_strategy,
        exec_strategy=strategy)

    data_input_names = encoder_data_input_fields + decoder_data_input_fields[:
                                                                             -1] + label_data_input_fields

    if TrainTaskConfig.val_file_pattern is not None:
        test = test_context(train_progm, avg_cost, train_exe, dev_count,
                            data_input_names, sum_cost, token_num)

    # the best cross-entropy value with label smoothing
    loss_normalizer = -((1. - TrainTaskConfig.label_smooth_eps) * np.log(
        (1. - TrainTaskConfig.label_smooth_eps
         )) + TrainTaskConfig.label_smooth_eps *
                        np.log(TrainTaskConfig.label_smooth_eps / (
                            ModelHyperParams.trg_vocab_size - 1) + 1e-20))
    init = False
M
minqiyang 已提交
567
    for pass_id in six.moves.xrange(TrainTaskConfig.pass_num):
Y
fix ut  
yi.wu 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
        pass_start_time = time.time()
        for batch_id, data in enumerate(train_data()):
            if batch_id >= 5:
                break

            feed_list = []
            total_num_token = 0

            #if TrainTaskConfig.local:
            #    lr_rate = lr_scheduler.update_learning_rate()
            #for place_id, data_buffer in enumerate(
            #        split_data(
            #            data, num_part=dev_count)):

            if TrainTaskConfig.local:
                lr_rate = lr_scheduler.update_learning_rate()

            for place_id, data_buffer in enumerate(
                    split_data(
                        data, num_part=dev_count)):
                data_input_dict, num_token = prepare_batch_input(
                    data_buffer, data_input_names, ModelHyperParams.eos_idx,
                    ModelHyperParams.eos_idx, ModelHyperParams.n_head,
                    ModelHyperParams.d_model)
                total_num_token += num_token
M
minqiyang 已提交
593
                feed_kv_pairs = list(data_input_dict.items())
Y
fix ut  
yi.wu 已提交
594
                if TrainTaskConfig.local:
M
minqiyang 已提交
595
                    feed_kv_pairs += list({
Y
fix ut  
yi.wu 已提交
596
                        lr_scheduler.learning_rate.name: lr_rate
M
minqiyang 已提交
597
                    }.items())
Y
fix ut  
yi.wu 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
                feed_list.append(dict(feed_kv_pairs))

                if not init:
                    for pos_enc_param_name in pos_enc_param_names:
                        pos_enc = position_encoding_init(
                            ModelHyperParams.max_length + 1,
                            ModelHyperParams.d_model)
                        feed_list[place_id][pos_enc_param_name] = pos_enc

            if not TrainTaskConfig.check_acc:
                for feed_dict in feed_list:
                    feed_dict[sum_cost.name + "@GRAD"] = 1. / total_num_token
            else:
                b = 100 * TrainTaskConfig.batch_size
                a = np.asarray([b], dtype="float32")
                for feed_dict in feed_list:
                    feed_dict[sum_cost.name + "@GRAD"] = 1. / a

            outs = train_exe.run(fetch_list=[sum_cost.name, token_num.name],
                                 feed=feed_list)

            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            total_sum_cost = sum_cost_val.sum()
            total_token_num = token_num_val.sum()
            total_avg_cost = total_sum_cost / total_token_num

            init = True

            # Validate and save the model for inference.
            if TrainTaskConfig.val_file_pattern is not None:
                val_avg_cost, val_ppl = test()
                print("[%f]" % val_avg_cost)
            else:
                assert (False)


#import transformer_reader as reader
class SortType(object):
    GLOBAL = 'global'
    POOL = 'pool'
    NONE = "none"


class Converter(object):
    def __init__(self, vocab, beg, end, unk, delimiter):
        self._vocab = vocab
        self._beg = beg
        self._end = end
        self._unk = unk
        self._delimiter = delimiter

    def __call__(self, sentence):
        return [self._beg] + [
            self._vocab.get(w, self._unk)
            for w in sentence.split(self._delimiter)
        ] + [self._end]


class ComposedConverter(object):
    def __init__(self, converters):
        self._converters = converters

    def __call__(self, parallel_sentence):
        return [
            self._converters[i](parallel_sentence[i])
            for i in range(len(self._converters))
        ]


class SentenceBatchCreator(object):
    def __init__(self, batch_size):
        self.batch = []
        self._batch_size = batch_size

    def append(self, info):
        self.batch.append(info)
        if len(self.batch) == self._batch_size:
            tmp = self.batch
            self.batch = []
            return tmp


class TokenBatchCreator(object):
    def __init__(self, batch_size):
        self.batch = []
        self.max_len = -1
        self._batch_size = batch_size

    def append(self, info):
        cur_len = info.max_len
        max_len = max(self.max_len, cur_len)
        if max_len * (len(self.batch) + 1) > self._batch_size:
            result = self.batch
            self.batch = [info]
            self.max_len = cur_len
            return result
        else:
            self.max_len = max_len
            self.batch.append(info)


class SampleInfo(object):
    def __init__(self, i, max_len, min_len):
        self.i = i
        self.min_len = min_len
        self.max_len = max_len


class MinMaxFilter(object):
    def __init__(self, max_len, min_len, underlying_creator):
        self._min_len = min_len
        self._max_len = max_len
        self._creator = underlying_creator

    def append(self, info):
        if info.max_len > self._max_len or info.min_len < self._min_len:
            return
        else:
            return self._creator.append(info)

    @property
    def batch(self):
        return self._creator.batch


class DataReader(object):
    """
    The data reader loads all data from files and produces batches of data
    in the way corresponding to settings.

    An example of returning a generator producing data batches whose data
    is shuffled in each pass and sorted in each pool:

    ```
    train_data = DataReader(
        src_vocab_fpath='data/src_vocab_file',
        trg_vocab_fpath='data/trg_vocab_file',
        fpattern='data/part-*',
        use_token_batch=True,
        batch_size=2000,
        pool_size=10000,
        sort_type=SortType.POOL,
        shuffle=True,
        shuffle_batch=True,
        start_mark='<s>',
        end_mark='<e>',
        unk_mark='<unk>',
        clip_last_batch=False).batch_generator
    ```

    :param src_vocab_fpath: The path of vocabulary file of source language.
    :type src_vocab_fpath: basestring
    :param trg_vocab_fpath: The path of vocabulary file of target language.
    :type trg_vocab_fpath: basestring
    :param fpattern: The pattern to match data files.
    :type fpattern: basestring
    :param batch_size: The number of sequences contained in a mini-batch.
        or the maximum number of tokens (include paddings) contained in a
        mini-batch.
    :type batch_size: int
    :param pool_size: The size of pool buffer.
    :type pool_size: int
    :param sort_type: The grain to sort by length: 'global' for all
        instances; 'pool' for instances in pool; 'none' for no sort.
    :type sort_type: basestring
    :param clip_last_batch: Whether to clip the last uncompleted batch.
    :type clip_last_batch: bool
    :param tar_fname: The data file in tar if fpattern matches a tar file.
    :type tar_fname: basestring
    :param min_length: The minimum length used to filt sequences.
    :type min_length: int
    :param max_length: The maximum length used to filt sequences.
    :type max_length: int
    :param shuffle: Whether to shuffle all instances.
    :type shuffle: bool
    :param shuffle_batch: Whether to shuffle the generated batches.
    :type shuffle_batch: bool
    :param use_token_batch: Whether to produce batch data according to
        token number.
    :type use_token_batch: bool
    :param field_delimiter: The delimiter used to split source and target in
        each line of data file.
    :type field_delimiter: basestring
    :param token_delimiter: The delimiter used to split tokens in source or
        target sentences.
    :type token_delimiter: basestring
    :param start_mark: The token representing for the beginning of
        sentences in dictionary.
    :type start_mark: basestring
    :param end_mark: The token representing for the end of sentences
        in dictionary.
    :type end_mark: basestring
    :param unk_mark: The token representing for unknown word in dictionary.
    :type unk_mark: basestring
    :param seed: The seed for random.
    :type seed: int
    """

    def __init__(self,
                 src_vocab_fpath,
                 trg_vocab_fpath,
                 fpattern,
                 batch_size,
                 pool_size,
                 sort_type=SortType.GLOBAL,
                 clip_last_batch=True,
                 tar_fname=None,
                 min_length=0,
                 max_length=100,
                 shuffle=True,
                 shuffle_batch=False,
                 use_token_batch=False,
                 field_delimiter="\t",
                 token_delimiter=" ",
                 start_mark="<s>",
                 end_mark="<e>",
                 unk_mark="<unk>",
                 seed=0):
        self._src_vocab = self.load_dict(src_vocab_fpath)
        self._only_src = True
        if trg_vocab_fpath is not None:
            self._trg_vocab = self.load_dict(trg_vocab_fpath)
            self._only_src = False
        self._pool_size = pool_size
        self._batch_size = batch_size
        self._use_token_batch = use_token_batch
        self._sort_type = sort_type
        self._clip_last_batch = clip_last_batch
        self._shuffle = shuffle
        self._shuffle_batch = shuffle_batch
        self._min_length = min_length
        self._max_length = max_length
        self._field_delimiter = field_delimiter
        self._token_delimiter = token_delimiter
        self.load_src_trg_ids(end_mark, fpattern, start_mark, tar_fname,
                              unk_mark)
        self._random = random.Random(x=seed)

    def load_src_trg_ids(self, end_mark, fpattern, start_mark, tar_fname,
                         unk_mark):
        converters = [
            Converter(
                vocab=self._src_vocab,
                beg=self._src_vocab[start_mark],
                end=self._src_vocab[end_mark],
                unk=self._src_vocab[unk_mark],
                delimiter=self._token_delimiter)
        ]
        if not self._only_src:
            converters.append(
                Converter(
                    vocab=self._trg_vocab,
                    beg=self._trg_vocab[start_mark],
                    end=self._trg_vocab[end_mark],
                    unk=self._trg_vocab[unk_mark],
                    delimiter=self._token_delimiter))

        converters = ComposedConverter(converters)

        self._src_seq_ids = []
        self._trg_seq_ids = None if self._only_src else []
        self._sample_infos = []

        for i, line in enumerate(self._load_lines(fpattern, tar_fname)):
            src_trg_ids = converters(line)
            self._src_seq_ids.append(src_trg_ids[0])
            lens = [len(src_trg_ids[0])]
            if not self._only_src:
                self._trg_seq_ids.append(src_trg_ids[1])
                lens.append(len(src_trg_ids[1]))
            self._sample_infos.append(SampleInfo(i, max(lens), min(lens)))

    def _load_lines(self, fpattern, tar_fname):
        fpaths = glob.glob(fpattern)

        if len(fpaths) == 1 and tarfile.is_tarfile(fpaths[0]):
            if tar_fname is None:
                raise Exception("If tar file provided, please set tar_fname.")

            f = tarfile.open(fpaths[0], "r")
            for line in f.extractfile(tar_fname):
M
minqiyang 已提交
879
                line = cpt.to_text(line)
Y
fix ut  
yi.wu 已提交
880 881 882 883 884 885 886 887 888
                fields = line.strip("\n").split(self._field_delimiter)
                if (not self._only_src and len(fields) == 2) or (
                        self._only_src and len(fields) == 1):
                    yield fields
        else:
            for fpath in fpaths:
                if not os.path.isfile(fpath):
                    raise IOError("Invalid file: %s" % fpath)

M
minqiyang 已提交
889
                with open(fpath, "rb") as f:
Y
fix ut  
yi.wu 已提交
890
                    for line in f:
M
minqiyang 已提交
891
                        line = cpt.to_text(line)
Y
fix ut  
yi.wu 已提交
892 893 894 895 896 897 898 899
                        fields = line.strip("\n").split(self._field_delimiter)
                        if (not self._only_src and len(fields) == 2) or (
                                self._only_src and len(fields) == 1):
                            yield fields

    @staticmethod
    def load_dict(dict_path, reverse=False):
        word_dict = {}
M
minqiyang 已提交
900
        with open(dict_path, "rb") as fdict:
Y
fix ut  
yi.wu 已提交
901
            for idx, line in enumerate(fdict):
M
minqiyang 已提交
902
                line = cpt.to_text(line)
Y
fix ut  
yi.wu 已提交
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
                if reverse:
                    word_dict[idx] = line.strip("\n")
                else:
                    word_dict[line.strip("\n")] = idx
        return word_dict

    def batch_generator(self):
        # global sort or global shuffle
        if self._sort_type == SortType.GLOBAL:
            infos = sorted(
                self._sample_infos, key=lambda x: x.max_len, reverse=True)
        else:
            if self._shuffle:
                infos = self._sample_infos
                self._random.shuffle(infos)
            else:
                infos = self._sample_infos

            if self._sort_type == SortType.POOL:
                for i in range(0, len(infos), self._pool_size):
                    infos[i:i + self._pool_size] = sorted(
                        infos[i:i + self._pool_size], key=lambda x: x.max_len)

        # concat batch
        batches = []
        batch_creator = TokenBatchCreator(
            self._batch_size
        ) if self._use_token_batch else SentenceBatchCreator(self._batch_size)
        batch_creator = MinMaxFilter(self._max_length, self._min_length,
                                     batch_creator)

        for info in infos:
            batch = batch_creator.append(info)
            if batch is not None:
                batches.append(batch)

        if not self._clip_last_batch and len(batch_creator.batch) != 0:
            batches.append(batch_creator.batch)

        if self._shuffle_batch:
            self._random.shuffle(batches)

        for batch in batches:
            batch_ids = [info.i for info in batch]

            if self._only_src:
                yield [[self._src_seq_ids[idx]] for idx in batch_ids]
            else:
                yield [(self._src_seq_ids[idx], self._trg_seq_ids[idx][:-1],
                        self._trg_seq_ids[idx][1:]) for idx in batch_ids]


#from transformer_model import transformer
def position_encoding_init(n_position, d_pos_vec):
    """
    Generate the initial values for the sinusoid position encoding table.
    """
    position_enc = np.array([[
        pos / np.power(10000, 2 * (j // 2) / d_pos_vec)
        for j in range(d_pos_vec)
    ] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)])
    position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2])  # dim 2i
    position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2])  # dim 2i+1
    return position_enc.astype("float32")


def multi_head_attention(queries,
                         keys,
                         values,
                         attn_bias,
                         d_key,
                         d_value,
                         d_model,
                         n_head=1,
                         dropout_rate=0.,
                         cache=None):
    """
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
    """
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
            "Inputs: quries, keys and values should all be 3-D tensors.")

    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
        """
        Add linear projection to queries, keys, and values.
        """
        q = layers.fc(input=queries,
                      size=d_key * n_head,
                      num_flatten_dims=2,
                      param_attr=const_para_attr,
                      bias_attr=const_bias_attr)
        k = layers.fc(input=keys,
                      size=d_key * n_head,
                      num_flatten_dims=2,
                      param_attr=const_para_attr,
                      bias_attr=const_bias_attr)
        v = layers.fc(input=values,
                      size=d_value * n_head,
                      num_flatten_dims=2,
                      param_attr=const_para_attr,
                      bias_attr=const_bias_attr)
        return q, k, v

    def __split_heads(x, n_head):
        """
        Reshape the last dimension of inpunt tensor x so that it becomes two
        dimensions and then transpose. Specifically, input a tensor with shape
        [bs, max_sequence_length, n_head * hidden_dim] then output a tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
        """
        if n_head == 1:
            return x

        hidden_size = x.shape[-1]
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
        reshaped = layers.reshape(
            x=x, shape=[0, 0, n_head, hidden_size // n_head])

        # permuate the dimensions into:
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
        """
        Transpose and then reshape the last two dimensions of inpunt tensor x
        so that it becomes one dimension, which is reverse to __split_heads.
        """
        if len(x.shape) == 3: return x
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
        return layers.reshape(
            x=trans_x,
M
minqiyang 已提交
1043
            shape=list(map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]])))
Y
fix ut  
yi.wu 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

    def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate):
        """
        Scaled Dot-Product Attention
        """
        scaled_q = layers.scale(x=q, scale=d_model**-0.5)
        product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
        if attn_bias:
            product += attn_bias
        weights = layers.softmax(product)
        if dropout_rate:
            weights = layers.dropout(
                weights,
                dropout_prob=dropout_rate,
                seed=ModelHyperParams.dropout_seed,
                is_test=False)
        out = layers.matmul(weights, v)
        return out

    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)

    if cache is not None:  # use cache and concat time steps
        k = cache["k"] = layers.concat([cache["k"], k], axis=1)
        v = cache["v"] = layers.concat([cache["v"], v], axis=1)

    q = __split_heads(q, n_head)
    k = __split_heads(k, n_head)
    v = __split_heads(v, n_head)

    ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model,
                                                  dropout_rate)

    out = __combine_heads(ctx_multiheads)

    # Project back to the model size.
    proj_out = layers.fc(input=out,
                         size=d_model,
                         num_flatten_dims=2,
                         param_attr=const_para_attr,
                         bias_attr=const_bias_attr)
    return proj_out


def positionwise_feed_forward(x, d_inner_hid, d_hid):
    """
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
    """
    hidden = layers.fc(input=x,
                       size=d_inner_hid,
                       num_flatten_dims=2,
                       act="relu",
                       param_attr=const_para_attr,
                       bias_attr=const_bias_attr)
    out = layers.fc(input=hidden,
                    size=d_hid,
                    num_flatten_dims=2,
                    param_attr=const_para_attr,
                    bias_attr=const_bias_attr)
    return out


def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
    """
    Add residual connection, layer normalization and droput to the out tensor
    optionally according to the value of process_cmd.
    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
        if cmd == "a":  # add residual connection
            out = out + prev_out if prev_out else out
        elif cmd == "n":  # add layer normalization
            out = layers.layer_norm(
                out,
                begin_norm_axis=len(out.shape) - 1,
                param_attr=fluid.initializer.Constant(1.),
                bias_attr=fluid.initializer.Constant(0.))
        elif cmd == "d":  # add dropout
            if dropout_rate:
                out = layers.dropout(
                    out,
                    dropout_prob=dropout_rate,
                    seed=ModelHyperParams.dropout_seed,
                    is_test=False)
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


def prepare_encoder(src_word,
                    src_pos,
                    src_vocab_size,
                    src_emb_dim,
                    src_max_len,
                    dropout_rate=0.,
                    word_emb_param_name=None,
                    pos_enc_param_name=None):
    """Add word embeddings and position encodings.
    The output tensor has a shape of:
    [batch_size, max_src_length_in_batch, d_model].
    This module is used at the bottom of the encoder stacks.
    """
    if TrainTaskConfig.check_acc:
        src_word_emb = layers.embedding(
            src_word,
            size=[src_vocab_size, src_emb_dim],
            param_attr=fluid.ParamAttr(
                name=word_emb_param_name,
                initializer=fluid.initializer.ConstantInitializer(0.001)))
    else:
        src_word_emb = layers.embedding(
            src_word,
            size=[src_vocab_size, src_emb_dim],
            param_attr=fluid.ParamAttr(
                name=word_emb_param_name,
                initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5)))

    src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
        param_attr=fluid.ParamAttr(
            name=pos_enc_param_name,
            trainable=False,
            initializer=fluid.initializer.ConstantInitializer(0.001)))
    enc_input = src_word_emb + src_pos_enc
    return layers.dropout(
        enc_input,
        dropout_prob=dropout_rate,
        seed=ModelHyperParams.dropout_seed,
        is_test=False) if dropout_rate else enc_input


prepare_encoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[0])
prepare_decoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[1])


def encoder_layer(enc_input,
                  attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
                  dropout_rate=0.):
    """The encoder layers that can be stacked to form a deep encoder.
    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
    """
    attn_output = multi_head_attention(enc_input, enc_input, enc_input,
                                       attn_bias, d_key, d_value, d_model,
                                       n_head, dropout_rate)
    attn_output = post_process_layer(enc_input, attn_output, "dan",
                                     dropout_rate)
    ffd_output = positionwise_feed_forward(attn_output, d_inner_hid, d_model)
    return post_process_layer(attn_output, ffd_output, "dan", dropout_rate)


def encoder(enc_input,
            attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            dropout_rate=0.):
    """
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
    """
    for i in range(n_layer):
        enc_output = encoder_layer(enc_input, attn_bias, n_head, d_key, d_value,
                                   d_model, d_inner_hid, dropout_rate)
        enc_input = enc_output
    return enc_output


def decoder_layer(dec_input,
                  enc_output,
                  slf_attn_bias,
                  dec_enc_attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
                  dropout_rate=0.,
                  cache=None):
    """ The layer to be stacked in decoder part.
    The structure of this module is similar to that in the encoder part except
    a multi-head attention is added to implement encoder-decoder attention.
    """
    slf_attn_output = multi_head_attention(
        dec_input,
        dec_input,
        dec_input,
        slf_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        dropout_rate,
        cache, )
    slf_attn_output = post_process_layer(
        dec_input,
        slf_attn_output,
        "dan",  # residual connection + dropout + layer normalization
        dropout_rate, )
    enc_attn_output = multi_head_attention(
        slf_attn_output,
        enc_output,
        enc_output,
        dec_enc_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        dropout_rate, )
    enc_attn_output = post_process_layer(
        slf_attn_output,
        enc_attn_output,
        "dan",  # residual connection + dropout + layer normalization
        dropout_rate, )
    ffd_output = positionwise_feed_forward(
        enc_attn_output,
        d_inner_hid,
        d_model, )
    dec_output = post_process_layer(
        enc_attn_output,
        ffd_output,
        "dan",  # residual connection + dropout + layer normalization
        dropout_rate, )
    return dec_output


def decoder(dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            dropout_rate=0.,
            caches=None):
    """
    The decoder is composed of a stack of identical decoder_layer layers.
    """
    for i in range(n_layer):
        cache = None
        if caches is not None:
            cache = caches[i]

        dec_output = decoder_layer(
            dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            dropout_rate,
            cache=cache)
        dec_input = dec_output
    return dec_output


def make_all_inputs(input_fields):
    """
    Define the input data layers for the transformer model.
    """
    inputs = []
    for input_field in input_fields:
        input_var = layers.data(
            name=input_field,
            shape=input_descs[input_field][0],
            dtype=input_descs[input_field][1],
            lod_level=input_descs[input_field][2]
            if len(input_descs[input_field]) == 3 else 0,
            append_batch_size=False)
        inputs.append(input_var)
    return inputs


def transformer(
        src_vocab_size,
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
        label_smooth_eps, ):
    if weight_sharing:
        assert src_vocab_size == src_vocab_size, (
            "Vocabularies in source and target should be same for weight sharing."
        )
    enc_inputs = make_all_inputs(encoder_data_input_fields)

    enc_output = wrap_encoder(
        src_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
        enc_inputs, )

    dec_inputs = make_all_inputs(decoder_data_input_fields[:-1])

    predict = wrap_decoder(
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
        dec_inputs,
        enc_output, )

    # Padding index do not contribute to the total loss. The weights is used to
    # cancel padding index in calculating the loss.
    label, weights = make_all_inputs(label_data_input_fields)
    if label_smooth_eps:
        label = layers.label_smooth(
            label=layers.one_hot(
                input=label, depth=trg_vocab_size),
            epsilon=label_smooth_eps)

    cost = layers.softmax_with_cross_entropy(
        logits=layers.reshape(
            predict, shape=[-1, trg_vocab_size]),
        label=label,
        soft_label=True if label_smooth_eps else False)
    weighted_cost = cost * weights
    sum_cost = layers.reduce_sum(weighted_cost)
    token_num = layers.reduce_sum(weights)
    avg_cost = sum_cost / token_num
    avg_cost.stop_gradient = True
    return sum_cost, avg_cost, predict, token_num


def wrap_encoder(src_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 dropout_rate,
                 weight_sharing,
                 enc_inputs=None):
    """
    The wrapper assembles together all needed layers for the encoder.
    """
    if enc_inputs is None:
        # This is used to implement independent encoder program in inference.
        src_word, src_pos, src_slf_attn_bias = \
            make_all_inputs(encoder_data_input_fields)
    else:
        src_word, src_pos, src_slf_attn_bias = \
            enc_inputs
    enc_input = prepare_encoder(
        src_word,
        src_pos,
        src_vocab_size,
        d_model,
        max_length,
        dropout_rate,
        word_emb_param_name=word_emb_param_names[0])
    enc_output = encoder(enc_input, src_slf_attn_bias, n_layer, n_head, d_key,
                         d_value, d_model, d_inner_hid, dropout_rate)
    return enc_output


def wrap_decoder(trg_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 dropout_rate,
                 weight_sharing,
                 dec_inputs=None,
                 enc_output=None,
                 caches=None):
    """
    The wrapper assembles together all needed layers for the decoder.
    """
    if dec_inputs is None:
        # This is used to implement independent decoder program in inference.
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
        enc_output = make_all_inputs(
            decoder_data_input_fields + decoder_util_input_fields)
    else:
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs

    dec_input = prepare_decoder(
        trg_word,
        trg_pos,
        trg_vocab_size,
        d_model,
        max_length,
        dropout_rate,
        word_emb_param_name=word_emb_param_names[0]
        if weight_sharing else word_emb_param_names[1])
    dec_output = decoder(
        dec_input,
        enc_output,
        trg_slf_attn_bias,
        trg_src_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        caches=caches)
    # Return logits for training and probs for inference.
    if weight_sharing:
        predict = layers.matmul(
            x=dec_output,
            y=fluid.get_var(word_emb_param_names[0]),
            transpose_y=True)
    else:
        predict = layers.fc(input=dec_output,
                            size=trg_vocab_size,
                            num_flatten_dims=2,
                            param_attr=const_para_attr,
                            bias_attr=const_bias_attr)
    if dec_inputs is None:
        predict = layers.softmax(predict)
    return predict


def fast_decode(
        src_vocab_size,
        trg_vocab_size,
        max_in_len,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
        beam_size,
        max_out_len,
        eos_idx, ):
    """
    Use beam search to decode. Caches will be used to store states of history
    steps which can make the decoding faster.
    """
    enc_output = wrap_encoder(src_vocab_size, max_in_len, n_layer, n_head,
                              d_key, d_value, d_model, d_inner_hid,
                              dropout_rate, weight_sharing)
    start_tokens, init_scores, trg_src_attn_bias = \
        make_all_inputs(fast_decoder_data_input_fields )

    def beam_search():
        max_len = layers.fill_constant(
            shape=[1], dtype=start_tokens.dtype, value=max_out_len)
        step_idx = layers.fill_constant(
            shape=[1], dtype=start_tokens.dtype, value=0)
        cond = layers.less_than(x=step_idx, y=max_len)
        while_op = layers.While(cond)
        # array states will be stored for each step.
        ids = layers.array_write(
            layers.reshape(start_tokens, (-1, 1)), step_idx)
        scores = layers.array_write(init_scores, step_idx)
        # cell states will be overwrited at each step.
        # caches contains states of history steps to reduce redundant
        # computation in decoder.
        caches = [{
            "k": layers.fill_constant_batch_size_like(
                input=start_tokens,
                shape=[-1, 0, d_model],
                dtype=enc_output.dtype,
                value=0),
            "v": layers.fill_constant_batch_size_like(
                input=start_tokens,
                shape=[-1, 0, d_model],
                dtype=enc_output.dtype,
                value=0)
        } for i in range(n_layer)]
        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
            pre_ids = layers.reshape(pre_ids, (-1, 1, 1))
            pre_scores = layers.array_read(array=scores, i=step_idx)
            # sequence_expand can gather sequences according to lod thus can be
            # used in beam search to sift states corresponding to selected ids.
            pre_src_attn_bias = layers.sequence_expand(
                x=trg_src_attn_bias, y=pre_scores)
            pre_enc_output = layers.sequence_expand(x=enc_output, y=pre_scores)
            pre_caches = [{
                "k": layers.sequence_expand(
                    x=cache["k"], y=pre_scores),
                "v": layers.sequence_expand(
                    x=cache["v"], y=pre_scores),
            } for cache in caches]
            pre_pos = layers.elementwise_mul(
                x=layers.fill_constant_batch_size_like(
                    input=pre_enc_output,  # cann't use pre_ids here since it has lod
                    value=1,
                    shape=[-1, 1, 1],
                    dtype=pre_ids.dtype),
                y=layers.increment(
                    x=step_idx, value=1.0, in_place=False),
                axis=0)
            logits = wrap_decoder(
                trg_vocab_size,
                max_in_len,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                dropout_rate,
                weight_sharing,
                dec_inputs=(pre_ids, pre_pos, None, pre_src_attn_bias),
                enc_output=pre_enc_output,
                caches=pre_caches)
            logits = layers.reshape(logits, (-1, trg_vocab_size))

            topk_scores, topk_indices = layers.topk(
                input=layers.softmax(logits), k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(topk_scores),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            # beam_search op uses lod to distinguish branches.
            topk_indices = layers.lod_reset(topk_indices, pre_ids)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=eos_idx)

            layers.increment(x=step_idx, value=1.0, in_place=True)
            # update states
            layers.array_write(selected_ids, i=step_idx, array=ids)
            layers.array_write(selected_scores, i=step_idx, array=scores)
            layers.assign(pre_src_attn_bias, trg_src_attn_bias)
            layers.assign(pre_enc_output, enc_output)
            for i in range(n_layer):
                layers.assign(pre_caches[i]["k"], caches[i]["k"])
                layers.assign(pre_caches[i]["v"], caches[i]["v"])
            length_cond = layers.less_than(x=step_idx, y=max_len)
            finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)

        finished_ids, finished_scores = layers.beam_search_decode(
            ids, scores, beam_size=beam_size, end_id=eos_idx)
        return finished_ids, finished_scores

    finished_ids, finished_scores = beam_search()
    return finished_ids, finished_scores


def get_model(is_dist, is_async):
    sum_cost, avg_cost, predict, token_num = transformer(
        ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size,
        ModelHyperParams.max_length + 1, ModelHyperParams.n_layer,
        ModelHyperParams.n_head, ModelHyperParams.d_key,
        ModelHyperParams.d_value, ModelHyperParams.d_model,
        ModelHyperParams.d_inner_hid, ModelHyperParams.dropout,
        ModelHyperParams.weight_sharing, TrainTaskConfig.label_smooth_eps)

    local_lr_scheduler = LearningRateScheduler(ModelHyperParams.d_model,
                                               TrainTaskConfig.warmup_steps,
                                               TrainTaskConfig.learning_rate)

    if not is_dist:
        optimizer = fluid.optimizer.Adam(
            learning_rate=local_lr_scheduler.learning_rate,
            beta1=TrainTaskConfig.beta1,
            beta2=TrainTaskConfig.beta2,
            epsilon=TrainTaskConfig.eps)
        optimizer.minimize(sum_cost)
    elif is_async:
        optimizer = fluid.optimizer.SGD(0.003)
        optimizer.minimize(sum_cost)
    else:
        lr_decay = fluid.layers\
         .learning_rate_scheduler\
         .noam_decay(ModelHyperParams.d_model,
            TrainTaskConfig.warmup_steps)

        optimizer = fluid.optimizer.Adam(
            learning_rate=lr_decay,
            beta1=TrainTaskConfig.beta1,
            beta2=TrainTaskConfig.beta2,
            epsilon=TrainTaskConfig.eps)
        optimizer.minimize(sum_cost)

    return sum_cost, avg_cost, predict, token_num, local_lr_scheduler


def update_args():
    src_dict = DataReader.load_dict(TrainTaskConfig.src_vocab_fpath)
    trg_dict = DataReader.load_dict(TrainTaskConfig.trg_vocab_fpath)
    dict_args = [
        "src_vocab_size", str(len(src_dict)), "trg_vocab_size",
        str(len(trg_dict)), "bos_idx",
        str(src_dict[TrainTaskConfig.special_token[0]]), "eos_idx",
        str(src_dict[TrainTaskConfig.special_token[1]]), "unk_idx",
        str(src_dict[TrainTaskConfig.special_token[2]])
    ]
    merge_cfg_from_list(dict_args, [TrainTaskConfig, ModelHyperParams])


class DistTransformer2x2(TestDistRunnerBase):
    def run_pserver(self, args):
        get_model(True, not args.sync_mode)
        t = self.get_transpiler(args.trainer_id,
                                fluid.default_main_program(), args.endpoints,
                                args.trainers, args.sync_mode)
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
X
Xin Pan 已提交
1698 1699 1700 1701 1702 1703

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(pserver_prog)

Y
fix ut  
yi.wu 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
    def run_trainer(self, place, args):

        sum_cost, avg_cost, predict, token_num, local_lr_scheduler = get_model(
            args.is_dist, not args.sync_mode)

        if args.is_dist:
            t = self.get_transpiler(args.trainer_id,
                                    fluid.default_main_program(),
                                    args.endpoints, args.trainers,
                                    args.sync_mode)
X
Xin Pan 已提交
1714
            trainer_prog = t.get_trainer_program()
Y
fix ut  
yi.wu 已提交
1715 1716 1717
            TrainTaskConfig.batch_size = 10
            TrainTaskConfig.train_file_pattern = TrainTaskConfig.data_path + "train.tok.clean.bpe.32000.en-de.train_{}".format(
                args.trainer_id)
X
Xin Pan 已提交
1718
        else:
Y
fix ut  
yi.wu 已提交
1719
            TrainTaskConfig.batch_size = 20
X
Xin Pan 已提交
1720 1721 1722
            trainer_prog = fluid.default_main_program()

        startup_exe = fluid.Executor(place)
Y
fix ut  
yi.wu 已提交
1723 1724 1725 1726 1727

        TrainTaskConfig.local = not args.is_dist

        train_loop(startup_exe, trainer_prog, 1, sum_cost, avg_cost,
                   local_lr_scheduler, token_num, predict)
X
Xin Pan 已提交
1728 1729 1730


if __name__ == "__main__":
Y
fix ut  
yi.wu 已提交
1731 1732
    update_args()
    runtime_main(DistTransformer2x2)