cxx_api_test.cc 4.2 KB
Newer Older
S
superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/api/cxx_api.h"
16
#include <gflags/gflags.h>
S
superjomn 已提交
17
#include <gtest/gtest.h>
S
superjomn 已提交
18
#include <vector>
19
#include "paddle/fluid/lite/core/mir/passes.h"
S
superjomn 已提交
20 21
#include "paddle/fluid/lite/core/op_registry.h"

22
DEFINE_string(model_dir, "", "");
S
superjomn 已提交
23
DEFINE_string(optimized_model, "", "");
24

Y
Yan Chunwei 已提交
25 26 27 28
// For training.
DEFINE_string(startup_program_path, "", "");
DEFINE_string(main_program_path, "", "");

S
superjomn 已提交
29 30 31
namespace paddle {
namespace lite {

S
superjomn 已提交
32
TEST(CXXApi, test) {
Y
Yan Chunwei 已提交
33
  lite::ExecutorLite predictor;
S
superjomn 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46
#ifndef LITE_WITH_CUDA
  std::vector<Place> valid_places({Place{TARGET(kHost), PRECISION(kFloat)}});
#else
  std::vector<Place> valid_places({
      Place{TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW)},
      Place{TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kNCHW)},
      Place{TARGET(kCUDA), PRECISION(kAny), DATALAYOUT(kNCHW)},
      Place{TARGET(kHost), PRECISION(kAny), DATALAYOUT(kNCHW)},
      Place{TARGET(kCUDA), PRECISION(kAny), DATALAYOUT(kAny)},
      Place{TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny)},
  });
#endif

47 48
  predictor.Build(FLAGS_model_dir, Place{TARGET(kCUDA), PRECISION(kFloat)},
                  valid_places);
49 50

  auto* input_tensor = predictor.GetInput(0);
51 52
  input_tensor->Resize(DDim(std::vector<DDim::value_type>({100, 100})));
  auto* data = input_tensor->mutable_data<float>();
53 54 55 56
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

S
superjomn 已提交
57
  // LOG(INFO) << "input " << *input_tensor;
58

59
  predictor.Run();
60 61

  auto* out = predictor.GetOutput(0);
62
  LOG(INFO) << out << " memory size " << out->data_size();
63 64 65
  LOG(INFO) << "out " << out->data<float>()[0];
  LOG(INFO) << "out " << out->data<float>()[1];
  LOG(INFO) << "dims " << out->dims();
S
superjomn 已提交
66
  // LOG(INFO) << "out " << *out;
S
superjomn 已提交
67 68
}

69
#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
S
Superjomn 已提交
70
TEST(CXXApi, save_model) {
Y
Yan Chunwei 已提交
71
  lite::ExecutorLite predictor;
S
Superjomn 已提交
72
  std::vector<Place> valid_places({Place{TARGET(kHost), PRECISION(kFloat)}});
73 74
  predictor.Build(FLAGS_model_dir, Place{TARGET(kCUDA), PRECISION(kFloat)},
                  valid_places);
S
Superjomn 已提交
75

S
superjomn 已提交
76
  predictor.SaveModel(FLAGS_optimized_model);
S
Superjomn 已提交
77
}
Y
Yan Chunwei 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#endif  // LITE_WITH_LIGHT_WEIGHT_FRAMEWORK

#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
TEST(CXXTrainer, train) {
  Place prefer_place({TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW)});
  std::vector<Place> valid_places({prefer_place});
  auto scope = std::make_shared<lite::Scope>();

  CXXTrainer trainer(scope, prefer_place, valid_places);

  std::string main_program_pb, startup_program_pb;
  ReadBinaryFile(FLAGS_main_program_path, &main_program_pb);
  ReadBinaryFile(FLAGS_startup_program_path, &startup_program_pb);
  framework::proto::ProgramDesc main_program_desc, startup_program_desc;
  main_program_desc.ParseFromString(main_program_pb);
  startup_program_desc.ParseFromString(startup_program_pb);

L
liuwei1031 已提交
95
  // LOG(INFO) << main_program_desc.DebugString();
Y
Yan Chunwei 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

  for (const auto& op : main_program_desc.blocks(0).ops()) {
    LOG(INFO) << "get op " << op.type();
  }

  return;

  trainer.RunStartupProgram(startup_program_desc);
  auto& exe = trainer.BuildMainProgramExecutor(main_program_desc);
  auto* tensor0 = exe.GetInput(0);
  tensor0->Resize(std::vector<int64_t>({100, 100}));
  auto* data0 = tensor0->mutable_data<float>();
  data0[0] = 0;

  exe.Run();
}
#endif  // LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
S
Superjomn 已提交
113

S
superjomn 已提交
114 115 116 117 118 119
}  // namespace lite
}  // namespace paddle

USE_LITE_OP(mul);
USE_LITE_OP(fc);
USE_LITE_OP(scale);
120 121
USE_LITE_OP(feed);
USE_LITE_OP(fetch);
S
superjomn 已提交
122 123 124 125 126 127 128 129 130
USE_LITE_OP(io_copy);
USE_LITE_KERNEL(feed, kHost, kAny, kAny, def);
USE_LITE_KERNEL(fetch, kHost, kAny, kAny, def);

#ifdef LITE_WITH_CUDA
USE_LITE_KERNEL(mul, kCUDA, kFloat, kNCHW, def);
USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, host_to_device);
USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, device_to_host);
#endif