pool_op_plugin.cu 10.3 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
16 17 18 19 20
#include "paddle/fluid/operators/math/pooling.h"

namespace paddle {
namespace inference {
namespace tensorrt {
N
nhzlx 已提交
21
namespace plugin {
N
nhzlx 已提交
22

23
nvinfer1::Dims PoolPlugin::getOutputDimensions(int index,
24
                                               const nvinfer1::Dims *inputDims,
25
                                               int nbInputs) TRT_NOEXCEPT {
N
nhzlx 已提交
26 27 28
  assert(nbInputs == 1);
  assert(index == 0);
  assert(inputDims[0].nbDims == 3);
29
  nvinfer1::Dims const &input_dims = inputDims[0];
N
nhzlx 已提交
30 31 32 33 34 35 36 37

  nvinfer1::Dims output_dims = input_dims;

  output_dims.d[1] = output_shape_[1];
  output_dims.d[2] = output_shape_[2];
  return output_dims;
}

38
int PoolPlugin::enqueue(int batchSize, const void *const *inputs,
39
#if IS_TRT_VERSION_LT(8000)
40 41
                        void **outputs, void *workspace,
                        cudaStream_t stream) TRT_NOEXCEPT {
42 43
#else
                        void *const *outputs, void *workspace,
44
                        cudaStream_t stream) TRT_NOEXCEPT {
45
#endif
46
  auto const &input_dims = this->getInputDims(0);
N
nhzlx 已提交
47
  int input_size = 0;
48
  float const *idata = reinterpret_cast<float const *>(inputs[0]);
49
  float *const *odatas = reinterpret_cast<float *const *>(outputs);
N
nhzlx 已提交
50 51 52 53 54 55

  std::vector<int> input_shape = input_shape_;
  std::vector<int> output_shape = output_shape_;
  input_shape.insert(input_shape.begin(), batchSize);
  output_shape.insert(output_shape.begin(), batchSize);

56 57 58 59 60 61
  if (pool_type_ == PoolType::max) {
    paddle::operators::math::MaxPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::MaxPool<float>, float>
        pool2d_forward;
    pool2d_forward(idata, input_shape, output_shape, ksize_, strides_,
62
                   paddings_, true, adaptive_, odatas[0], stream, pool_process);
63 64 65 66 67 68
  } else if (pool_type_ == PoolType::avg) {
    paddle::operators::math::AvgPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::AvgPool<float>, float>
        pool2d_forward;
    pool2d_forward(idata, input_shape, output_shape, ksize_, strides_,
69
                   paddings_, true, adaptive_, odatas[0], stream, pool_process);
70
  }
N
nhzlx 已提交
71 72 73 74

  return cudaGetLastError() != cudaSuccess;
}

75 76 77
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)

78 79 80 81 82 83 84 85 86 87 88 89 90
PoolPluginDynamic::PoolPluginDynamic(void const *serialData,
                                     size_t serialLength) {
  DeserializeValue(&serialData, &serialLength, &ceil_mode_);
  const char *pool_type;
  DeserializeValue(&serialData, &serialLength, &pool_type);
  pool_type_ = std::string(pool_type);
  DeserializeValue(&serialData, &serialLength, &adaptive_);
  DeserializeValue(&serialData, &serialLength, &ksize_);
  DeserializeValue(&serialData, &serialLength, &strides_);
  DeserializeValue(&serialData, &serialLength, &paddings_);
  DeserializeValue(&serialData, &serialLength, &is_global_);
}

91
size_t PoolPluginDynamic::getSerializationSize() const TRT_NOEXCEPT {
92 93 94 95 96
  return SerializedSize(ceil_mode_) + SerializedSize(pool_type_.c_str()) +
         SerializedSize(adaptive_) + SerializedSize(ksize_) +
         SerializedSize(strides_) + SerializedSize(paddings_) +
         SerializedSize(is_global_);
}
97

98
void PoolPluginDynamic::serialize(void *buffer) const TRT_NOEXCEPT {
99 100 101 102 103 104 105 106
  SerializeValue(&buffer, ceil_mode_);
  SerializeValue(&buffer, pool_type_.c_str());
  SerializeValue(&buffer, adaptive_);
  SerializeValue(&buffer, ksize_);
  SerializeValue(&buffer, strides_);
  SerializeValue(&buffer, paddings_);
  SerializeValue(&buffer, is_global_);
}
107 108 109

nvinfer1::DimsExprs PoolPluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
110
    nvinfer1::IExprBuilder &expr_builder) TRT_NOEXCEPT {
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  PADDLE_ENFORCE_EQ(nb_inputs, 1,
                    platform::errors::InvalidArgument(
                        "The Split plugin should be only one input."));

  PADDLE_ENFORCE_EQ(
      inputs[0].d[1]->isConstant(), true,
      platform::errors::InvalidArgument("The channel dimension should be "
                                        "static, but we found it's dynamic."));
  nvinfer1::DimsExprs output(inputs[0]);
  if (is_global_) {
    output.d[2] = expr_builder.constant(1);
    output.d[3] = expr_builder.constant(1);
    return output;
  }
  if (adaptive_) {
    output.d[2] = expr_builder.constant(ksize_[0]);
    output.d[3] = expr_builder.constant(ksize_[1]);
    return output;
  }

  auto stri_0 = expr_builder.constant(strides_[0]);
  auto stri_1 = expr_builder.constant(strides_[1]);
Z
Zhaolong Xing 已提交
133
  auto one_value = expr_builder.constant(1);
134

Z
Zhaolong Xing 已提交
135 136
  auto v0_tmp = expr_builder.constant(-ksize_[0] + 2 * paddings_[0]);
  auto v1_tmp = expr_builder.constant(-ksize_[1] + 2 * paddings_[1]);
137

Z
Zhaolong Xing 已提交
138 139 140 141
  auto ceil_tmp =
      expr_builder.constant(-ksize_[0] + 2 * paddings_[0] + strides_[0] - 1);
  auto ceil1_tmp =
      expr_builder.constant(-ksize_[1] + 2 * paddings_[1] + strides_[1] - 1);
142 143

  if (!ceil_mode_) {
Z
Zhaolong Xing 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    output.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[2], *v0_tmp),
            *stri_0),
        *one_value);
    output.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[3], *v1_tmp),
            *stri_1),
        *one_value);

161
  } else {
Z
Zhaolong Xing 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    output.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[2], *ceil_tmp),
            *stri_0),
        *one_value);
    output.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[3], *ceil1_tmp),
            *stri_1),
        *one_value);
178 179 180 181 182 183 184
  }

  return output;
}

bool PoolPluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
185
    int nb_outputs) TRT_NOEXCEPT {
186 187 188 189 190 191 192 193 194 195 196 197
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));
  (in_out && pos < (nb_inputs + nb_outputs));

  return ((in_out[pos].type == nvinfer1::DataType::kFLOAT) &&
198
          in_out[pos].format == nvinfer1::PluginFormat::kLINEAR);
199 200 201
}

nvinfer1::DataType PoolPluginDynamic::getOutputDataType(
202 203
    int index, const nvinfer1::DataType *input_types,
    int nb_inputs) const TRT_NOEXCEPT {
204 205 206 207 208 209 210 211 212 213 214 215 216
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Pool Plugin only has one input, so the "
                                  "index value should be 0, but get %d.",
                                  index));
  PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT), true,
                    platform::errors::InvalidArgument(
                        "The input type should be half or float"));
  return input_types[0];
}

int PoolPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
                               const nvinfer1::PluginTensorDesc *output_desc,
                               const void *const *inputs, void *const *outputs,
217 218
                               void *workspace,
                               cudaStream_t stream) TRT_NOEXCEPT {
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
  auto input_dims = input_desc[0].dims;
  int n = input_dims.d[0];
  int c = input_dims.d[1];
  int h = input_dims.d[2];
  int w = input_dims.d[3];

  const float *input = static_cast<const float *>(inputs[0]);
  float *output = static_cast<float *>(outputs[0]);

  std::vector<int> input_shape, output_shape;
  for (int i = 0; i < input_dims.nbDims; i++)
    input_shape.push_back(input_dims.d[i]);
  output_shape = input_shape;

  std::vector<int> ksize = ksize_;
  std::vector<int> paddings = paddings_;
  if (is_global_) {
    ksize[0] = h;
    ksize[1] = w;
    paddings[0] = 0;
    paddings[1] = 0;
    output_shape[2] = 1;
    output_shape[3] = 1;
  } else {
    auto data_dim = CalcOutputSize({h, w}, ceil_mode_, adaptive_, ksize_,
                                   strides_, paddings_);
    output_shape[2] = data_dim[0];
    output_shape[3] = data_dim[1];
  }

  if (pool_type_ == "max") {
    paddle::operators::math::MaxPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::MaxPool<float>, float>
        pool2d_forward;
    pool2d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
255
                   true, adaptive_, output, stream, pool_process);
256 257 258 259 260 261
  } else if (pool_type_ == "avg") {
    paddle::operators::math::AvgPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::AvgPool<float>, float>
        pool2d_forward;
    pool2d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
262
                   true, adaptive_, output, stream, pool_process);
263 264 265 266 267 268
  }

  return cudaGetLastError() != cudaSuccess;
}
#endif

N
nhzlx 已提交
269
}  // namespace plugin
N
nhzlx 已提交
270 271 272
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle