session.html 26.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Design Doc: Session &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../genindex.html"/>
        <link rel="search" title="搜索" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
88
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_cn.html">MOBILE</a></li>
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
112 113
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
114
<li class="toctree-l3"><a class="reference internal" href="../../howto/dev/build_cn.html">用Docker编译和测试PaddlePaddle</a></li>
115
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_cn.html">从源码编译</a></li>
116 117 118 119 120 121 122 123 124 125 126 127
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
128 129 130 131 132 133
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/fabric_cn.html">fabric集群</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/openmpi_cn.html">openmpi集群</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_cn.html">kubernetes单机</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_distributed_cn.html">kubernetes distributed分布式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_aws_cn.html">AWS上运行kubernetes集群训练</a></li>
134 135
</ul>
</li>
136
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
159 160 161 162 163 164
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
165
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">训练与应用</a></li>
166 167 168 169 170 171 172 173 174 175 176 177 178
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/fluid.html">Fluid</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/layers.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/regularizer.html">Regularizer</a></li>
</ul>
</li>
179 180 181 182 183 184 185 186 187 188
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
189
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_cn.html">MOBILE</a><ul>
190 191 192
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_android_cn.html">Android平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_ios_cn.html">iOS平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_raspberry_cn.html">Raspberry Pi平台编译指南</a></li>
193 194
</ul>
</li>
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Design Doc: Session</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="design-doc-session">
<span id="design-doc-session"></span><h1>Design Doc: Session<a class="headerlink" href="#design-doc-session" title="永久链接至标题"></a></h1>
<div class="section" id="abstract">
<span id="abstract"></span><h2>Abstract<a class="headerlink" href="#abstract" title="永久链接至标题"></a></h2>
<p>The <em>session</em> object encapsulates the environment in which the
computation graph is executed.</p>
<p>We will have the <em>local</em> session and <em>remote</em> session, they offer the
same <a class="reference external" href="#interface">interface</a>. The local session encapsulates the local
runtime environment and the remote session encapsulates the cluster
runtime environment.</p>
<p>The local runtime environment contains:</p>
<ol class="simple">
<li>computation devices (i.e., CPU, GPU) handles, and</li>
<li>the <a class="reference internal" href="../scope.html"><span class="doc">scope</span></a> which holds all variables.</li>
</ol>
<p>The remote runtime environment contains:</p>
<ol class="simple">
<li>computation devices (i.e., CPU and GPU on node 0, 1) in a cluster,
and</li>
<li>the distributed <a class="reference internal" href="../scope.html"><span class="doc">scope</span></a> in a cluster which holds all
variables.</li>
</ol>
<p>The user can create a remote session on Paddle Cloud and evaluate the
computation graph with it. In this way, the user can control the
remote computation resource in a cluster from his local computer.</p>
</div>
<div class="section" id="background">
<span id="background"></span><h2>Background<a class="headerlink" href="#background" title="永久链接至标题"></a></h2>
<p>The current design has an implicit global session in which
<code class="docutils literal"><span class="pre">paddle.eval()</span></code> is executed. The pain point is:</p>
<p>Since the user is not able to explicitly switch between runtime
environments, the user cannot run a topology in two independent
environments.</p>
<p>For example, in reinforcement learning, the user may want to have a
stale model for inference and a fresh model for training, and only
replace the stale model with the fresh model periodically.</p>
<p>Furthermore, we have no concept that encapsulates a remote environment
that executes a computation graph.</p>
<p>We need the session object to address above issues.</p>
</div>
<div class="section" id="session">
<span id="session"></span><h2>Session<a class="headerlink" href="#session" title="永久链接至标题"></a></h2>
<p>A session is an object that owns the runtime environment. All
computations are executed through <code class="docutils literal"><span class="pre">session.eval()</span></code>.</p>
<div class="section" id="interface">
<span id="interface"></span><h3>Interface<a class="headerlink" href="#interface" title="永久链接至标题"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span><span class="p">(</span>
    <span class="n">targets</span><span class="p">,</span>
    <span class="n">feed_dict</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Evaluates the target Operations or Variables in <code class="docutils literal"><span class="pre">targets</span></code>.</p>
<ul>
<li><p class="first"><em>targets</em>: the evaluation targets. Can be a single Operation or
Variable, or a list with the Operations or Variables as
elements. The value returned by <code class="docutils literal"><span class="pre">eval()</span></code> has the same shape as the
<code class="docutils literal"><span class="pre">target</span></code> argument.</p>
<p>The PaddlePaddle program is represented by
the <a class="reference external" href="design/design/program.md">ProgramDesc</a>, <code class="docutils literal"><span class="pre">eval()</span></code> will infer the
ProgramDesc from the given targets and run the PaddlePaddle
program. Please
see
<a class="reference external" href="/design/refactor/distributed_architecture.html#local-training-architecture">this graph</a> for
the detailed illustration for the local session
and
<a class="reference external" href="/design/refactor/distributed_architecture.html#distributed-training-architecture">this graph</a> for
the detailed illustration for the remote session.</p>
</li>
<li><p class="first"><em>feed_dict</em>: a dictionary that contains the tensors which override
the edges of the computation graph.</p>
<p>feed_dict not only can provide the input data, it can override any
OP&#8217;s input as well:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="mf">2.0</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s2">&quot;a&quot;</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">variable</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;b&quot;</span><span class="p">)</span>
<span class="n">c</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">mul</span><span class="p">(</span><span class="n">a</span><span class="p">,</span><span class="n">b</span><span class="p">)</span>
<span class="n">sess</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">targets</span><span class="o">=</span><span class="n">c</span><span class="p">,</span> <span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="s2">&quot;b&quot;</span><span class="p">:</span><span class="mf">3.0</span><span class="p">})</span> <span class="c1"># returns 6.0</span>
</pre></div>
</div>
</li>
</ul>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">close</span><span class="p">()</span>
</pre></div>
</div>
<p>Closes the session and releases the scope that the session owns.</p>
</div>
<div class="section" id="create-a-local-session">
<span id="create-a-local-session"></span><h3>Create a Local Session<a class="headerlink" href="#create-a-local-session" title="永久链接至标题"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">session</span><span class="p">(</span>
    <span class="n">devices</span><span class="o">=</span><span class="bp">None</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Creates a new session. One session owns one global scope, so creating
multiple sessions will create different scopes.</p>
<ul class="simple">
<li><em>devices</em>: a single <code class="docutils literal"><span class="pre">string</span></code> or a list of <code class="docutils literal"><span class="pre">string</span></code> of device names,
the corresponding devices will be the computation devices for
<code class="docutils literal"><span class="pre">eval()</span></code>. If not specified, all available devices (e.g., all GPUs)
will be used. The user doesn&#8217;t need to specify the CPU device since
it will be always used. Multiple sessions can use the same device.</li>
</ul>
<div class="section" id="example">
<span id="example"></span><h4>Example<a class="headerlink" href="#example" title="永久链接至标题"></a></h4>
<div class="highlight-Python"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="mf">2.0</span><span class="p">)</span>
<span class="n">c</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="n">b</span>
<span class="n">sess</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">session</span><span class="p">(</span><span class="n">devices</span><span class="o">=</span><span class="p">[</span><span class="s2">&quot;gpu:0&quot;</span><span class="p">,</span> <span class="s2">&quot;gpu:1&quot;</span><span class="p">,</span> <span class="s2">&quot;fpga:0&quot;</span><span class="p">])</span>
<span class="n">sess</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
<span class="n">sess</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="create-a-remote-session">
<span id="create-a-remote-session"></span><h3>Create a Remote Session<a class="headerlink" href="#create-a-remote-session" title="永久链接至标题"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">create_cloud_job</span><span class="p">(</span>
    <span class="n">name</span><span class="p">,</span>
    <span class="n">num_trainer</span><span class="p">,</span>
    <span class="n">mem_per_trainer</span><span class="p">,</span>
    <span class="n">gpu_per_trainer</span><span class="p">,</span>
    <span class="n">cpu_per_trainer</span><span class="p">,</span>
    <span class="n">num_ps</span><span class="p">,</span>
    <span class="n">mem_per_ps</span><span class="p">,</span>
    <span class="n">cpu_per_ps</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Creates a Paddle Cloud job. Fails if the job name exists.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">get_cloud_job</span><span class="p">(</span>
    <span class="n">name</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Gets a Paddle Cloud job.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">remote_session</span><span class="p">(</span>
    <span class="n">job</span>
<span class="p">)</span>
</pre></div>
</div>
<ul class="simple">
<li><em>job</em>: the Paddle Cloud job.</li>
</ul>
<div class="section" id="example">
<span id="id1"></span><h4>Example<a class="headerlink" href="#example" title="永久链接至标题"></a></h4>
<div class="highlight-Python"><div class="highlight"><pre><span></span><span class="n">reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">recordio</span><span class="p">(</span><span class="s2">&quot;/pfs/home/peter/mnist-train-*&quot;</span><span class="p">)</span> <span class="c1"># data stored on Paddle Cloud</span>
<span class="n">image</span> <span class="o">=</span> <span class="n">reader</span><span class="o">.</span><span class="n">column</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">label</span> <span class="o">=</span> <span class="n">reader</span><span class="o">.</span><span class="n">column</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">fc1</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">op</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="s2">&quot;sigmoid&quot;</span><span class="p">)</span>
<span class="n">fc2</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">op</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">fc1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="s2">&quot;softmax&quot;</span><span class="p">)</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">op</span><span class="o">.</span><span class="n">cross_entropy</span><span class="p">(</span><span class="n">fc2</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
<span class="n">opt</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">sgd</span><span class="p">(</span><span class="n">cost</span><span class="p">)</span>

<span class="n">job</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">create_cloud_job</span><span class="p">(</span><span class="s2">&quot;test&quot;</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;1G&quot;</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="s2">&quot;1G&quot;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">sess</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">remote_ession</span><span class="p">(</span><span class="n">job</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1000</span><span class="p">):</span>
    <span class="n">sess</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">opt</span><span class="p">)</span>
<span class="n">sess</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>