test_squeeze2_op.py 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import unittest
17

18
import numpy as np
W
wanghuancoder 已提交
19
from eager_op_test import OpTest
20
from test_attribute_var import UnittestBase
21

22 23 24
import paddle
from paddle.fluid.framework import Program, program_guard

25
paddle.enable_static()
26 27 28 29 30 31


# Correct: General.
class TestSqueezeOp(OpTest):
    def setUp(self):
        self.op_type = "squeeze2"
32
        self.prim_op_type = "comp"
33
        self.python_api = paddle.squeeze
34
        self.public_python_api = paddle.squeeze
35 36 37
        self.python_out_sig = [
            "Out"
        ]  # python out sig is customized output signature.
38
        self.init_test_case()
39
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float64")}
40 41 42
        self.init_attrs()
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.new_shape),
43
            "XShape": np.random.random(self.ori_shape).astype("float64"),
44 45 46
        }

    def test_check_output(self):
W
wanghuancoder 已提交
47
        self.check_output(no_check_set=['XShape'], check_prim=True)
48 49

    def test_check_grad(self):
W
wanghuancoder 已提交
50
        self.check_grad(["X"], "Out", check_prim=True)
51 52

    def init_test_case(self):
Z
zhupengyang 已提交
53
        self.ori_shape = (1, 3, 1, 40)
54
        self.axes = (0, 2)
Z
zhupengyang 已提交
55
        self.new_shape = (3, 40)
56 57 58 59 60 61 62 63

    def init_attrs(self):
        self.attrs = {"axes": self.axes}


# Correct: There is mins axis.
class TestSqueezeOp1(TestSqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
64
        self.ori_shape = (1, 20, 1, 5)
65
        self.axes = (0, -2)
Z
zhupengyang 已提交
66
        self.new_shape = (20, 5)
67 68 69 70


# Correct: No axes input.
class TestSqueezeOp2(TestSqueezeOp):
71 72 73 74
    def setUp(self):
        self.op_type = "squeeze2"
        self.prim_op_type = "comp"
        self.python_api = paddle.squeeze
75
        self.public_python_api = paddle.squeeze
76 77 78 79 80 81 82 83 84 85 86
        self.python_out_sig = [
            "Out"
        ]  # python out sig is customized output signature.
        self.init_test_case()
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float64")}
        self.init_attrs()
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.new_shape),
            "XShape": np.random.random(self.ori_shape).astype("float64"),
        }

87
    def init_test_case(self):
Z
zhupengyang 已提交
88
        self.ori_shape = (1, 20, 1, 5)
89
        self.axes = ()
Z
zhupengyang 已提交
90
        self.new_shape = (20, 5)
91 92


93
# Correct: Just part of axes be squeezed.
94 95
class TestSqueezeOp3(TestSqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
96
        self.ori_shape = (6, 1, 5, 1, 4, 1)
97
        self.axes = (1, -1)
Z
zhupengyang 已提交
98
        self.new_shape = (6, 5, 1, 4)
99 100


101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
class TestSqueeze2AxesTensor(UnittestBase):
    def init_info(self):
        self.shapes = [[2, 3, 4]]
        self.save_path = os.path.join(self.temp_dir.name, 'squeeze_tensor')

    def test_static(self):
        main_prog = Program()
        starup_prog = Program()
        with program_guard(main_prog, starup_prog):
            fc = paddle.nn.Linear(4, 10)
            x = paddle.randn([2, 3, 4])
            x.stop_gradient = False
            feat = fc(x)  # [2,3,10]
            feat = paddle.unsqueeze(feat, [0, 2])  # [1, 2, 3, 1, 10]
            # axes is a Variable
            axes = paddle.assign([0, 2])
            out = paddle.squeeze(feat, axes)
118
            out2 = paddle.squeeze(feat, axes)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

            sgd = paddle.optimizer.SGD()
            sgd.minimize(paddle.mean(out))
            self.assertTrue("Var[" in str(main_prog))

            exe = paddle.static.Executor()
            exe.run(starup_prog)
            res = exe.run(fetch_list=[feat, out, out2])
            self.assertEqual(res[0].shape, (1, 2, 1, 3, 10))
            self.assertEqual(res[1].shape, (2, 3, 10))
            self.assertEqual(res[2].shape, (2, 3, 10))

            paddle.static.save_inference_model(self.save_path, [x], [out], exe)
            # Test for Inference Predictor
            infer_out = self.infer_prog()
            self.assertEqual(infer_out.shape, (2, 3, 10))


class TestSqueeze2AxesTensorList(UnittestBase):
    def init_info(self):
        self.shapes = [[2, 3, 4]]
        self.save_path = os.path.join(self.temp_dir.name, 'squeeze_tensor')

    def test_static(self):
        main_prog = Program()
        starup_prog = Program()
        with program_guard(main_prog, starup_prog):
            fc = paddle.nn.Linear(4, 10)
            x = paddle.randn([2, 3, 4])
            x.stop_gradient = False
            feat = fc(x)  # [2,3,10]
            feat = paddle.unsqueeze(feat, [0, 2])  # [1, 2, 3, 1, 10]
            # axes is a list[Variable]
            axes = [
                paddle.full([1], 0, dtype='int32'),
154
                paddle.full([1], 2, dtype='int32'),
155 156
            ]
            out = paddle.squeeze(feat, axes)
157
            out2 = paddle.squeeze(feat, axes)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

            sgd = paddle.optimizer.SGD()
            sgd.minimize(paddle.mean(out))
            self.assertTrue("Vars[" in str(main_prog))

            exe = paddle.static.Executor()
            exe.run(starup_prog)
            res = exe.run(fetch_list=[feat, out, out2])
            self.assertEqual(res[0].shape, (1, 2, 1, 3, 10))
            self.assertEqual(res[1].shape, (2, 3, 10))
            self.assertEqual(res[2].shape, (2, 3, 10))

            paddle.static.save_inference_model(self.save_path, [x], [out], exe)
            # Test for Inference Predictor
            infer_out = self.infer_prog()
            self.assertEqual(infer_out.shape, (2, 3, 10))


H
heliqi 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
# test api
class TestSqueezeAPI(unittest.TestCase):
    def setUp(self):
        self.executed_api()

    def executed_api(self):
        self.squeeze = paddle.squeeze

    def test_api(self):
        paddle.disable_static()
        input_data = np.random.random([3, 2, 1]).astype("float32")
        x = paddle.to_tensor(input_data)
        out = self.squeeze(x, axis=2)
        out.backward()

        self.assertEqual(out.shape, [3, 2])

        paddle.enable_static()

    def test_error(self):
        def test_axes_type():
            x2 = paddle.static.data(name="x2", shape=[2, 1, 25], dtype="int32")
            self.squeeze(x2, axis=2.1)

        self.assertRaises(TypeError, test_axes_type)


class TestSqueezeInplaceAPI(TestSqueezeAPI):
    def executed_api(self):
        self.squeeze = paddle.squeeze_


208 209
if __name__ == "__main__":
    unittest.main()