logical_op.cc 6.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/controlflow/logical_op.h"
16
#include <string>
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18 19 20 21 22 23

namespace paddle {
namespace operators {
template <typename OpComment>
class BinaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
24
  void Make() override {
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    OpComment comment;
    AddInput("X",
             string::Sprintf("(LoDTensor) Left hand operand of %s operator",
                             comment.type));
    AddInput("Y",
             string::Sprintf("(LoDTensor) Right hand operand of %s operator",
                             comment.type));
    AddOutput("Out", string::Sprintf(
                         "(LoDTensor) n-dim bool tensor. Each element is %s",
                         comment.equation));
    AddComment(string::Sprintf(R"DOC(%s Operator

It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean tensors.
Each element of Out is calculated by %s
)DOC",
                               comment.type, comment.equation));
  }
};

template <typename OpComment>
class UnaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
47
  void Make() override {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    OpComment comment;
    AddInput("X", string::Sprintf("(LoDTensor) Operand of %s operator",
                                  comment.type));
    AddOutput("Out", string::Sprintf(
                         "(LoDTensor) n-dim bool tensor. Each element is %s",
                         comment.equation));
    AddComment(string::Sprintf(R"DOC(%s Operator

It operates element-wise on X, and returns the Out. X and Out are N-dim boolean tensors.
Each element of Out is calculated by %s
)DOC",
                               comment.type, comment.equation));
  }
};

template <typename OpComment>
class BinaryLogicalOpInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    OpComment comment;
    PADDLE_ENFORCE(context->HasInput("X"),
                   "Input(X) of %s operator must not be null", comment.type);
    PADDLE_ENFORCE(context->HasInput("Y"),
                   "Input(Y) of %s operator must not be null", comment.type);
    auto dim_x = context->GetInputDim("X");
    auto dim_y = context->GetInputDim("Y");
    PADDLE_ENFORCE_EQ(framework::product(dim_x), framework::product(dim_y),
                      "The number of elements in X and Y should be same");

    context->SetOutputDim("Out", context->GetInputDim("X"));
    context->ShareLoD("X", "Out");
  }
};

template <typename OpComment>
class UnaryLogicalOpInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    OpComment comment;
    PADDLE_ENFORCE(context->HasInput("X"),
                   "Input(X) of %s operator must not be null", comment.type);
    context->SetOutputDim("Out", context->GetInputDim("X"));
    context->ShareLoD("X", "Out");
  }
};

class LogicalOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
99
  framework::OpKernelType GetExpectedKernelType(
100
      const framework::ExecutionContext &ctx) const override {
101
    framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    // LogicalOp kernel's device type is decided by input tensor place
    kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
    return kt;
  }
};

}  // namespace operators
}  // namespace paddle

#define REGISTER_BINARY_LOGICAL_OP(op_type, _equation)                     \
  struct _##op_type##Comment {                                             \
    static char type[];                                                    \
    static char equation[];                                                \
  };                                                                       \
  char _##op_type##Comment::type[]{#op_type};                              \
  char _##op_type##Comment::equation[]{_equation};                         \
  REGISTER_OPERATOR(                                                       \
      op_type, ::paddle::operators::LogicalOp,                             \
      ::paddle::operators::BinaryLogicalOpProtoMaker<_##op_type##Comment>, \
      ::paddle::operators::BinaryLogicalOpInferShape<_##op_type##Comment>, \
      ::paddle::framework::EmptyGradOpMaker);

#define REGISTER_UNARY_LOGICAL_OP(op_type, _equation)                     \
  struct _##op_type##Comment {                                            \
    static char type[];                                                   \
    static char equation[];                                               \
  };                                                                      \
  char _##op_type##Comment::type[]{#op_type};                             \
  char _##op_type##Comment::equation[]{_equation};                        \
  REGISTER_OPERATOR(                                                      \
      op_type, ::paddle::operators::LogicalOp,                            \
      ::paddle::operators::UnaryLogicalOpProtoMaker<_##op_type##Comment>, \
      ::paddle::operators::UnaryLogicalOpInferShape<_##op_type##Comment>, \
      ::paddle::framework::EmptyGradOpMaker);

Y
update  
yi.wu 已提交
137
REGISTER_BINARY_LOGICAL_OP(logical_and, "$$Out = X \\&\\& Y$$");
138 139
REGISTER_BINARY_LOGICAL_KERNEL(logical_and, CPU,
                               paddle::operators::LogicalAndFunctor);
Y
update  
yi.wu 已提交
140
REGISTER_BINARY_LOGICAL_OP(logical_or, "$$Out = X || Y$$");
141 142
REGISTER_BINARY_LOGICAL_KERNEL(logical_or, CPU,
                               paddle::operators::LogicalOrFunctor);
Y
update  
yi.wu 已提交
143
REGISTER_UNARY_LOGICAL_OP(logical_not, "$$Out = !X$$");
144 145
REGISTER_UNARY_LOGICAL_KERNEL(logical_not, CPU,
                              paddle::operators::LogicalNotFunctor);
146
REGISTER_BINARY_LOGICAL_OP(logical_xor,
Y
update  
yi.wu 已提交
147
                           "$$Out = (X || Y) \\&\\& !(X \\&\\& Y)$$");
148 149
REGISTER_BINARY_LOGICAL_KERNEL(logical_xor, CPU,
                               paddle::operators::LogicalXorFunctor);