conv_kernel.cc 7.8 KB
Newer Older
Z
zhangkaihuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
17
#include "paddle/phi/core/tensor_utils.h"
18
#include "paddle/phi/core/visit_type.h"
Z
zhangkaihuo 已提交
19
#include "paddle/phi/kernels/funcs/blas/blas.h"
20
#include "paddle/phi/kernels/sparse/cpu/conv.h"
Z
zhangkaihuo 已提交
21 22 23 24 25 26 27 28

namespace phi {
namespace sparse {

/**
 * x: (N, D, H, W, C)
 * kernel: (D, H, W, C, OC)
 * out: (N, D, H, W, OC)
29
 **/
30
template <typename T, typename IntT = int>
Z
zhangkaihuo 已提交
31 32 33 34 35 36 37 38
void Conv3dCooCPUKernel(const CPUContext& dev_ctx,
                        const SparseCooTensor& x,
                        const DenseTensor& kernel,
                        const std::vector<int>& paddings,
                        const std::vector<int>& dilations,
                        const std::vector<int>& strides,
                        const int groups,
                        const bool subm,
39
                        const std::string& key,
Z
zhangkaihuo 已提交
40
                        SparseCooTensor* out,
41 42
                        DenseTensor* rulebook,
                        DenseTensor* counter) {
Z
zhangkaihuo 已提交
43 44 45 46 47 48 49 50
  // update padding and dilation
  // Currently, only support x.layout is NDHWC, groups = 1
  // if x.layout != NDHWC then transpose(x), transpose(weight)

  const auto& x_dims = x.dims();
  const auto& kernel_dims = kernel.dims();
  int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  DDim out_dims = {1, 1, 1, 1, 1};
Z
zhangkaihuo 已提交
51 52 53 54 55
  std::vector<int> kernel_sizes(kernel_dims.size());
  for (int i = 0; i < kernel_dims.size(); i++) {
    kernel_sizes[i] = kernel_dims[i];
  }

56 57
  std::vector<int> subm_paddings(paddings), subm_strides(strides);
  if (subm) {
58 59
    // the out shape of subm_conv is same as input shape
    // reset the padding=kernel_size/2 and strides=1
60 61 62
    phi::funcs::sparse::ResetSubmKernelSizeAndStrides(
        kernel.dims(), &subm_paddings, &subm_strides);
  }
63 64 65 66 67 68

  phi::funcs::sparse::GetOutShape(
      x_dims, kernel_sizes, subm_paddings, dilations, subm_strides, &out_dims);
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];

Z
zhangkaihuo 已提交
69 70 71
  // Second algorithm:
  // https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf
  // 1. product rulebook
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  DenseTensor h_counter, h_offsets;
  h_counter.Resize({kernel_size});
  h_offsets.Resize({kernel_size + 1});
  int* h_counter_ptr = dev_ctx.template HostAlloc<int>(&h_counter);
  int* h_offsets_ptr = dev_ctx.template HostAlloc<int>(&h_offsets);

  // DenseTensor* rulebook = nullptr;
  const IntT* rulebook_ptr = nullptr;
  int n = 0;
  bool need_product_rulebook = true;
  if (subm && !key.empty()) {
    rulebook_ptr = phi::funcs::sparse::PrepareSubm<T, IntT, CPUContext>(
        dev_ctx,
        x,
        key,
        out_dims,
        out,
        h_counter_ptr,
        h_offsets_ptr,
        &n,
        &need_product_rulebook);
  }
  if (need_product_rulebook) {
    DenseTensor tmp_rulebook;
    ProductRuleBook<T, CPUContext, IntT>(dev_ctx,
                                         x,
                                         kernel_sizes,
                                         subm_paddings,
                                         dilations,
                                         subm_strides,
                                         out_dims,
                                         subm,
                                         &tmp_rulebook,
                                         h_counter_ptr);

    UpdateRulebookAndOutIndex<T, CPUContext, IntT>(
        dev_ctx, x, kernel_size, out_channels, out_dims, &tmp_rulebook, out);
    n = tmp_rulebook.dims()[1];
    rulebook_ptr = tmp_rulebook.data<IntT>();

    phi::funcs::sparse::SaveToTable(
        dev_ctx, x, key, tmp_rulebook, h_counter, out, rulebook, counter);
  }
  // int n = rulebook->dims()[1];
Z
zhangkaihuo 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128

  // 2. gather
  DenseTensorMeta in_features_meta(
      x.dtype(), {n, in_channels}, DataLayout::NHWC);
  DenseTensorMeta out_features_meta(
      x.dtype(), {n, out_channels}, DataLayout::NHWC);
  phi::DenseTensor in_features =
      phi::Empty(dev_ctx, std::move(in_features_meta));
  phi::DenseTensor out_features =
      phi::Empty(dev_ctx, std::move(out_features_meta));
  T* in_features_ptr = in_features.data<T>();
  T* out_features_ptr = out_features.data<T>();

129 130
  Gather<T, IntT>(
      x.values().data<T>(), rulebook_ptr + n, n, in_channels, in_features_ptr);
Z
zhangkaihuo 已提交
131 132

  // 3. call gemm for every werght
133
  auto blas = phi::funcs::GetBlas<CPUContext, T>(dev_ctx);
Z
zhangkaihuo 已提交
134 135
  int offset = 0;
  for (int i = 0; i < kernel_size; i++) {
136 137
    h_offsets_ptr[i] = offset;
    offset += h_counter_ptr[i];
Z
zhangkaihuo 已提交
138
  }
139
  h_offsets_ptr[kernel_size] = offset;
Z
zhangkaihuo 已提交
140 141 142

  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
143
    if (h_counter_ptr[i] <= 0) {
Z
zhangkaihuo 已提交
144 145 146 147
      continue;
    }

    // call gemm: (n, in_channels) * (in_channels, out_channels)
148
    const int M = h_counter_ptr[i];
Z
zhangkaihuo 已提交
149 150
    const int K = in_channels;   // in_channels
    const int N = out_channels;  // out_channels
151
    T* tmp_in_ptr = in_features_ptr + h_offsets_ptr[i] * in_channels;
Z
zhangkaihuo 已提交
152
    const T* tmp_kernel_ptr = kernel_ptr + i * K * N;
153
    T* tmp_out_ptr = out_features_ptr + h_offsets_ptr[i] * out_channels;
Z
zhangkaihuo 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166
    blas.GEMM(CblasNoTrans,
              CblasNoTrans,
              M,
              N,
              K,
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_out_ptr);
  }

  // 4. scatter
167
  T* out_values_ptr = out->mutable_values()->data<T>();
Z
zhangkaihuo 已提交
168
  memset(out_values_ptr, 0, sizeof(T) * out->nnz() * out_channels);
169 170
  Scatter<T, IntT>(
      out_features_ptr, rulebook_ptr + n * 2, n, out_channels, out_values_ptr);
171 172 173
}

template <typename T, typename Context>
Z
zhangkaihuo 已提交
174 175 176 177 178 179 180 181
void Conv3dCooKernel(const Context& dev_ctx,
                     const SparseCooTensor& x,
                     const DenseTensor& kernel,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     const std::vector<int>& strides,
                     const int groups,
                     const bool subm,
182
                     const std::string& key,
Z
zhangkaihuo 已提交
183
                     SparseCooTensor* out,
184 185
                     DenseTensor* rulebook,
                     DenseTensor* counter) {
186 187 188 189 190 191 192 193 194 195 196 197 198 199
  PD_VISIT_BASE_INTEGRAL_TYPES(x.indices().dtype(), "Conv3dCooCPUKernel", ([&] {
                                 Conv3dCooCPUKernel<T, data_t>(dev_ctx,
                                                               x,
                                                               kernel,
                                                               paddings,
                                                               dilations,
                                                               strides,
                                                               groups,
                                                               subm,
                                                               key,
                                                               out,
                                                               rulebook,
                                                               counter);
                               }));
Z
zhangkaihuo 已提交
200 201 202 203 204 205
}

}  // namespace sparse
}  // namespace phi

PD_REGISTER_KERNEL(
Z
zhangkaihuo 已提交
206
    conv3d_coo, CPU, ALL_LAYOUT, phi::sparse::Conv3dCooKernel, float, double) {
Z
zhangkaihuo 已提交
207 208
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}