lookup_table_op.h 9.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
M
minqiyang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
25 26 27 28

namespace paddle {
namespace operators {

C
chengduoZH 已提交
29
using Tensor = framework::Tensor;
F
fengjiayi 已提交
30
using LoDTensor = framework::LoDTensor;
31
using SelectedRows = framework::SelectedRows;
32 33
using DDim = framework::DDim;

Q
qiaolongfei 已提交
34
constexpr int64_t kNoPadding = -1;
35 36

template <typename T>
Y
Yu Yang 已提交
37
class LookupTableKernel : public framework::OpKernel<T> {
38
 public:
39
  void Compute(const framework::ExecutionContext &context) const override {
40 41
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
42
    auto *table_var = context.InputVar("W");
43

H
hong 已提交
44 45 46
    auto id_name = context.InputNames("Ids").front();
    auto embedding_name = context.InputNames("W").front();
    auto out_name = context.OutputNames("Out").front();
Q
Qiao Longfei 已提交
47

48 49
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    bool is_test = context.Attr<bool>("is_test");
Q
Qiao Longfei 已提交
50

51 52
    int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
    int64_t ids_numel = ids_t->numel();
Q
Qiao Longfei 已提交
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];

      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(
              ids[i], row_number,
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  row_number, ids[i]));
          PADDLE_ENFORCE_GE(
              ids[i], 0,
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  row_number, ids[i]));
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
82
        }
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
      }

    } else if (table_var->IsType<SelectedRows>()) {
      const auto &table_t = table_var->Get<SelectedRows>();
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());
      auto input_data_type = table_t.value().type();
      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_GE(
              ids[i], 0,
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0. But received %ld",
                  ids[i]));
          if (is_test) {
            auto id_index = table_t.GetIndexFromId(ids[i]);

            if (id_index != -1) {
105 106
              if (input_data_type == framework::proto::VarType::INT8 ||
                  input_data_type == framework::proto::VarType::BF16) {
107 108 109 110 111 112 113 114 115 116 117
                memcpy(output + i * row_width, table + id_index * row_width,
                       row_width * sizeof(T));
              } else {
                auto blas =
                    math::GetBlas<platform::CPUDeviceContext, T>(context);
                blas.VCOPY(row_width, table + id_index * row_width,
                           output + i * row_width);
              }
            } else {
              memset(output + i * row_width, 0, row_width * sizeof(T));
            }
Q
Qiao Longfei 已提交
118
          } else {
119
            auto id_index = table_t.Index(ids[i]);
120 121
            PADDLE_ENFORCE_GE(
                ids[i], 0,
122 123 124 125
                platform::errors::InvalidArgument(
                    "Variable value (input) of OP(fluid.layers.embedding) "
                    "expected >= 0. But received %ld",
                    ids[i]));
126
            PADDLE_ENFORCE_GE(
127 128 129 130
                id_index, 0,
                platform::errors::InvalidArgument(
                    "the input key should be exists. But received %d.",
                    id_index));
131

132 133
            if (input_data_type == framework::proto::VarType::INT8 ||
                input_data_type == framework::proto::VarType::BF16) {
134 135 136 137 138 139 140
              memcpy(output + i * row_width, table + id_index * row_width,
                     row_width * sizeof(T));
            } else {
              auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
              blas.VCOPY(row_width, table + id_index * row_width,
                         output + i * row_width);
            }
Q
Qiao Longfei 已提交
141
          }
142 143
        }
      }
144 145 146 147 148
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
149
class LookupTableGradKernel : public framework::OpKernel<T> {
150
 public:
151
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
152 153 154 155 156 157 158 159
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
160
      PADDLE_THROW(platform::errors::InvalidArgument(
Q
qiaolongfei 已提交
161
          "The parameter W of a LookupTable "
162
          "must be either LoDTensor or SelectedRows"));
Q
qiaolongfei 已提交
163 164
    }

165
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
166
    bool is_sparse = context.Attr<bool>("is_sparse");
167 168
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
169
    if (is_sparse) {
170 171 172
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
173

174
      auto *ids_data = ids->data<int64_t>();
175
      int64_t ids_num = ids->numel();
176

M
minqiyang 已提交
177
      std::vector<int64_t> new_rows;
M
minqiyang 已提交
178 179
      new_rows.resize(ids_num);
      std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
180
      d_table->set_rows(new_rows);
181

182
      auto *d_table_value = d_table->mutable_value();
183
      d_table_value->Resize({ids_num, table_dim[1]});
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
      d_table_value->mutable_data<T>(context.GetPlace());
      d_table->set_height(table_dim[0]);

      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table_value->data<T>();

      auto d_output_dims = d_output->dims();
      auto d_output_dims_2d =
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
                        platform::errors::InvalidArgument(
                            "ShapeError: The shape of lookup_table@Grad and "
                            "output@Grad should be same. "
                            "But received lookup_table@Grad's shape = [%s], "
                            "output@Grad's shape = [%s].",
                            d_table_value->dims(), d_output_dims_2d));
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
201
    } else {
202 203 204
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
205

206
      auto *ids_data = ids->data<int64_t>();
207

208 209
      int64_t N = table_dim[0];
      int64_t D = table_dim[1];
210

211 212
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
213

214 215
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

216
      for (int64_t i = 0; i < ids->numel(); ++i) {
Q
Qiao Longfei 已提交
217 218 219 220
        if (padding_idx != kNoPadding && ids_data[i] == padding_idx) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
221 222
          PADDLE_ENFORCE_LT(
              ids_data[i], N,
223 224 225 226 227
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  N, ids_data[i]));
228 229
          PADDLE_ENFORCE_GE(
              ids_data[i], 0,
230 231 232 233 234
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input"
                  "value.",
                  N, ids_data[i]));
235 236 237
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
238
        }
239 240 241 242 243 244 245
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle