expand_kernel.cc 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/expand_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void ExpandKernel(const Context& ctx,
                  const DenseTensor& x,
                  const IntArray& shape,
                  DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;
  auto in_dims = x.dims();
  auto expand_shape = shape.GetData();
  auto vec_in_dims = phi::vectorize<int>(in_dims);
  auto diff = expand_shape.size() - vec_in_dims.size();
  vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
  std::vector<int> final_expand_shape(vec_in_dims.size());
  for (size_t i = 0; i < vec_in_dims.size(); ++i) {
    PADDLE_ENFORCE_NE(
        expand_shape[i],
        0,
        phi::errors::InvalidArgument("The expanded size cannot be zero."));
    if (i < diff) {  // expand_shape = [3,4,-1,-1], X = [10,2] -->
                     // final_expand_shape = [3,4,10,2]
      PADDLE_ENFORCE_GT(
          expand_shape[i],
          0,
          phi::errors::InvalidArgument(
              "The expanded size (%d) for non-existing dimensions must be "
              "positive for expand_v2 op.",
              expand_shape[i]));
      final_expand_shape[i] = expand_shape[i];
    } else if (expand_shape[i] > 0) {  // expand_shape = [3,4,10,4], X =
                                       // [10,1] --> final_expand_shape =
                                       // [3,4,10,4]
      if (vec_in_dims[i] != 1) {
        PADDLE_ENFORCE_EQ(
            vec_in_dims[i],
            expand_shape[i],
            phi::errors::InvalidArgument(
                "The value (%d) of the non-singleton dimension does not match"
                " the corresponding value (%d) in shape for expand_v2 op.",
                vec_in_dims[i],
                expand_shape[i]));
        final_expand_shape[i] = expand_shape[i];
      } else {
        final_expand_shape[i] = expand_shape[i];
      }
    } else {  // expand_shape = [3,4,-1,-1], X = [10,2] --> final_expand_shape
              // = [3,4,10,2]
      PADDLE_ENFORCE_EQ(
          expand_shape[i],
          -1,
          phi::errors::InvalidArgument(
              "When the value in shape is negative for expand_v2 op, "
              "only -1 is supported, but the value received is %d.",
              expand_shape[i]));
      final_expand_shape[i] = vec_in_dims[i];
    }
  }

  auto rank = x.dims().size();
  PADDLE_ENFORCE_GE(
      rank,
81
      0,
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
      phi::errors::InvalidArgument(
          "The rank of the input 'X' for expand_v2_npu op must be positive, "
          "but the value received is %d.",
          rank));
  auto shape_size = final_expand_shape.size();
  PADDLE_ENFORCE_GE(
      shape_size,
      rank,
      phi::errors::InvalidArgument(
          "The number (%d) of elements of 'shape' for expand_v2_npu op must "
          "be "
          "greater than or equal to the rank (%d) of the input 'X'.",
          shape_size,
          rank));

97 98 99 100 101 102 103 104 105 106 107 108
  if (shape_size == 0) {
    phi::DDim out_dims = phi::make_ddim(final_expand_shape);
    out->Resize(out_dims);
    ctx.template Alloc<T>(out);

    int r = xpu::copy<XPUType>(ctx.x_context(),
                               reinterpret_cast<const XPUType*>(x.data<T>()),
                               reinterpret_cast<XPUType*>(out->data<T>()),
                               x.numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "copy");
    return;
  }
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  DDim out_dims = phi::make_ddim(final_expand_shape);
  out->Resize(out_dims);
  ctx.template Alloc<T>(out);
  auto& x_shape = vec_in_dims;
  auto out_shape = phi::vectorize<int>(out_dims);

  int r = XPU_SUCCESS;

  if (std::is_same<T, bool>::value) {
    auto x_data = reinterpret_cast<const int8_t*>(x.data<T>());
    auto out_data = reinterpret_cast<int8_t*>(out->data<T>());
    r = xpu::broadcast<int8_t>(
        ctx.x_context(), x_data, out_data, x_shape, out_shape);
  } else {
    auto x_data = reinterpret_cast<const XPUType*>(x.data<T>());
    auto out_data = reinterpret_cast<XPUType*>(out->data<T>());
    r = xpu::broadcast<XPUType>(
        ctx.x_context(), x_data, out_data, x_shape, out_shape);
  }
  PADDLE_ENFORCE_EQ(r,
                    XPU_SUCCESS,
                    phi::errors::External("XPU API(broadcast) return wrong "
                                          "value[%d %s] in ExpandV2XPUKernel.",
                                          r,
                                          XPUAPIErrorMsg[r]));
}
}  // namespace phi

PD_REGISTER_KERNEL(expand,
                   XPU,
                   ALL_LAYOUT,
                   phi::ExpandKernel,
                   float,
                   phi::dtype::float16,
                   bool,
                   int,
                   int64_t) {}