dot_grad_kernel_impl.h 31.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/fluid/operators/eigen/eigen_function.h"
18 19 20
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/complex_kernel.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
21
#include "paddle/phi/kernels/funcs/eigen/common.h"
22

23
namespace phi {
24 25 26 27 28 29 30 31 32 33 34 35

template <typename DeviceContext, typename T, typename Enabel = void>
struct DotGradFunction {
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* tensor_x,
                  const DenseTensor* tensor_y,
                  const DenseTensor* tensor_dout,
                  DenseTensor* tensor_dx,
                  DenseTensor* tensor_dy);
};

template <typename DeviceContext, typename T>
36
struct DotGradFunction<DeviceContext, T, phi::funcs::EnableComplex<T>> {
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* tensor_x,
                  const DenseTensor* tensor_y,
                  const DenseTensor* tensor_dout,
                  DenseTensor* tensor_dx,
                  DenseTensor* tensor_dy) {
#if defined(__NVCC__) || defined(__HIPCC__)
    if (1 == tensor_dout->dims().size()) {
      auto dout = EigenVector<T>::Flatten(*tensor_dout);

      if (tensor_dx) {
        auto y = EigenVector<T>::Flatten(*tensor_y);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dx->numel());

        ConjKernel<T, DeviceContext>(ctx, *tensor_y, tensor_dx);

        auto dx = EigenVector<T>::Flatten(*tensor_dx);
        dx.device(dev) = dx * dout.broadcast(size);
      }

      if (tensor_dy) {
        auto x = EigenVector<T>::Flatten(*tensor_x);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dy->numel());

        ConjKernel<T, DeviceContext>(ctx, *tensor_x, tensor_dy);

        auto dy = EigenVector<T>::Flatten(*tensor_dy);
        dy.device(dev) = dy * dout.broadcast(size);
      }
    } else {
      auto dout = EigenMatrix<T>::From(*tensor_dout);

      if (tensor_dx) {
72
        ctx.template Alloc<T>(tensor_dx);
73 74 75 76 77 78 79 80 81 82 83
        auto y = EigenMatrix<T>::From(*tensor_y);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dx->dims()[1]);

        ConjKernel<T, DeviceContext>(ctx, *tensor_y, tensor_dx);

        auto dx = EigenMatrix<T>::From(*tensor_dx);
        dx.device(dev) = dx * dout.broadcast(size);
      }

      if (tensor_dy) {
84
        ctx.template Alloc<T>(tensor_dy);
85 86 87 88 89 90 91 92 93 94 95 96 97 98
        auto x = EigenMatrix<T>::From(*tensor_x);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dy->dims()[1]);

        ConjKernel<T, DeviceContext>(ctx, *tensor_x, tensor_dy);

        auto dy = EigenMatrix<T>::From(*tensor_dy);
        dy.device(dev) = dy * dout.broadcast(size);
      }
    }
#else
    const auto* data_dout = tensor_dout->data<T>();

    if (tensor_dx) {
99
      auto* data_dx = ctx.template Alloc<T>(tensor_dx);
100 101
      const auto* data_y = tensor_y->data<T>();
      const DDim& dim = tensor_x->dims();
102
      size_t N = static_cast<size_t>(phi::product(dim));
103 104 105 106 107 108 109 110 111 112 113

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dx[i] = T(data_y[i].real, -data_y[i].imag) * data_dout[s];
      }
    }

    if (tensor_dy) {
114
      auto* data_dy = ctx.template Alloc<T>(tensor_dy);
115 116
      const auto* data_x = tensor_x->data<T>();
      const DDim& dim = tensor_y->dims();
117
      size_t N = static_cast<size_t>(phi::product(dim));
118 119 120 121 122 123 124 125 126 127 128 129 130 131

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dy[i] = T(data_x[i].real, -data_x[i].imag) * data_dout[s];
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T>
132
struct DotGradFunction<DeviceContext, T, phi::funcs::DisableComplex<T>> {
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* tensor_x,
                  const DenseTensor* tensor_y,
                  const DenseTensor* tensor_dout,
                  DenseTensor* tensor_dx,
                  DenseTensor* tensor_dy) {
#if defined(__NVCC__) || defined(__HIPCC__)
    if (1 == tensor_dout->dims().size()) {
      auto dout = EigenVector<T>::Flatten(*tensor_dout);
      if (tensor_dx) {
        auto y = EigenVector<T>::Flatten(*tensor_y);
        auto dx = EigenVector<T>::Flatten(*tensor_dx);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dx->numel());
        dx.device(dev) = y * dout.broadcast(size);
      }

      if (tensor_dy) {
        auto x = EigenVector<T>::Flatten(*tensor_x);
        auto dy = EigenVector<T>::Flatten(*tensor_dy);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dy->numel());
        dy.device(dev) = x * dout.broadcast(size);
      }
    } else {
      auto dout = EigenMatrix<T>::From(*tensor_dout);

      if (tensor_dx) {
161
        ctx.template Alloc<T>(tensor_dx);
162 163 164 165 166 167 168 169
        auto y = EigenMatrix<T>::From(*tensor_y);
        auto dx = EigenMatrix<T>::From(*tensor_dx);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dx->dims()[1]);
        dx.device(dev) = y * dout.broadcast(size);
      }

      if (tensor_dy) {
170
        ctx.template Alloc<T>(tensor_dy);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        auto x = EigenMatrix<T>::From(*tensor_x);
        auto dy = EigenMatrix<T>::From(*tensor_dy);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dy->dims()[1]);
        dy.device(dev) = x * dout.broadcast(size);
      }
    }
#else
    auto const *x = tensor_x->data<T>(), *y = tensor_y->data<T>(),
               *dz = tensor_dout->data<T>();
    auto&& d = tensor_x->dims();
    auto const N = tensor_x->numel();
    auto const B = d[d.size() - 1];

    if (tensor_dx) {
186
      auto* dx = ctx.template Alloc<T>(tensor_dx);
187 188 189 190 191 192 193
      for (auto j = 0; j < N / B; ++j) {
        auto const ss = dz[j];
        for (auto i = 0; i < B; ++i) *dx++ = *y++ * ss;
      }
    }

    if (tensor_dy) {
194
      auto* dy = ctx.template Alloc<T>(tensor_dy);
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
      for (auto j = 0; j < N / B; ++j) {
        auto const ss = dz[j];
        for (auto i = 0; i < B; i++) *dy++ = *x++ * ss;
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T, typename Enabel = void>
struct DotDoubleGradFunction {
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* tensor_x,
                  const DenseTensor* tensor_y,
                  const DenseTensor* tensor_dout,
                  const DenseTensor* tensor_ddx,
                  const DenseTensor* tensor_ddy,
                  DenseTensor* tensor_dx,
                  DenseTensor* tensor_dy,
                  DenseTensor* tensor_ddout);
};

template <typename DeviceContext, typename T>
218
struct DotDoubleGradFunction<DeviceContext, T, phi::funcs::EnableComplex<T>> {
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* tensor_x,
                  const DenseTensor* tensor_y,
                  const DenseTensor* tensor_dout,
                  const DenseTensor* tensor_ddx,
                  const DenseTensor* tensor_ddy,
                  DenseTensor* tensor_dx,
                  DenseTensor* tensor_dy,
                  DenseTensor* tensor_ddout) {
#if defined(__NVCC__) || defined(__HIPCC__)
    if (1 == tensor_dout->dims().size()) {
      DenseTensor tensor_dout_help;
      auto& dev = *ctx.eigen_device();
      if (tensor_dx || tensor_dy) {
        tensor_dout_help = Conj<T, DeviceContext>(ctx, *tensor_dout);
      }
      if (tensor_dx) {
        auto ddy = EigenVector<T>::Flatten(*tensor_ddy);
        Eigen::DSizes<int, 1> size(tensor_ddy->numel());
        auto dx = EigenVector<T>::Flatten(*tensor_dx);
        auto dout = EigenVector<T>::Flatten(tensor_dout_help);
        dx.device(dev) = ddy * dout.broadcast(size);
      }

      if (tensor_dy) {
        auto ddx = EigenVector<T>::Flatten(*tensor_ddx);
        Eigen::DSizes<int, 1> size(tensor_ddx->numel());
        auto dy = EigenVector<T>::Flatten(*tensor_dy);
        auto dout = EigenVector<T>::Flatten(tensor_dout_help);
        dy.device(dev) = ddx * dout.broadcast(size);
      }

      if (tensor_ddout) {
        DenseTensor tensor_x_help = Conj<T, DeviceContext>(ctx, *tensor_x);
        DenseTensor tensor_y_help = Conj<T, DeviceContext>(ctx, *tensor_y);

        auto x = EigenVector<T>::Flatten(tensor_x_help);
        auto y = EigenVector<T>::Flatten(tensor_y_help);
        auto ddx = EigenVector<T>::Flatten(*tensor_ddx);
        auto ddy = EigenVector<T>::Flatten(*tensor_ddy);
        auto ddout = EigenVector<T>::Flatten(*tensor_ddout);
        ddout.device(dev) = (x * ddy + y * ddx).sum();
      }
    }
#else
    const auto* data_dout = tensor_dout->data<T>();

    if (tensor_dx) {
267
      auto* data_dx = ctx.template Alloc<T>(tensor_dx);
268 269 270 271 272 273 274 275 276 277 278 279 280 281
      const auto* data_ddy = tensor_ddy->data<T>();
      const DDim& dim = tensor_dx->dims();
      size_t N = static_cast<size_t>(product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dx[i] = T(data_dout[s].real, -data_dout[s].imag) * data_ddy[i];
      }
    }

    if (tensor_dy) {
282
      auto* data_dy = ctx.template Alloc<T>(tensor_dy);
283 284 285 286 287 288 289 290 291 292 293 294 295 296
      const auto* data_ddx = tensor_ddx->data<T>();
      const DDim& dim = tensor_dy->dims();
      size_t N = static_cast<size_t>(product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dy[i] = T(data_dout[s].real, -data_dout[s].imag) * data_ddx[i];
      }
    }

    if (tensor_ddout) {
297
      auto* data_ddout = ctx.template Alloc<T>(tensor_ddout);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
      auto* data_x = tensor_x->data<T>();
      auto* data_y = tensor_y->data<T>();
      auto* data_ddx = tensor_ddx->data<T>();
      auto* data_ddy = tensor_ddy->data<T>();

      const DDim& dim = tensor_dy->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;
      bool new_s = false;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) {
          ++s;
          new_s = true;
        }
        if (new_s) {
          data_ddout[s] = T(data_x[i].real, -data_x[i].imag) * data_ddy[i] +
                          T(data_y[i].real, -data_y[i].imag) * data_ddx[i];
        } else {
          data_ddout[s] += T(data_x[i].real, -data_x[i].imag) * data_ddy[i] +
                           T(data_y[i].real, -data_y[i].imag) * data_ddx[i];
        }
        new_s = false;
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T>
329
struct DotDoubleGradFunction<DeviceContext, T, phi::funcs::DisableComplex<T>> {
330 331 332 333 334 335 336 337 338 339 340 341 342 343
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* tensor_x,
                  const DenseTensor* tensor_y,
                  const DenseTensor* tensor_dout,
                  const DenseTensor* tensor_ddx,
                  const DenseTensor* tensor_ddy,
                  DenseTensor* tensor_dx,
                  DenseTensor* tensor_dy,
                  DenseTensor* tensor_ddout) {
#if defined(__NVCC__) || defined(__HIPCC__)
    if (1 == tensor_dout->dims().size()) {
      auto& dev = *ctx.eigen_device();
      auto dout = EigenVector<T>::Flatten(*tensor_dout);
      if (tensor_dx) {
344
        ctx.template Alloc<T>(tensor_dx);
345 346 347 348 349 350 351
        auto ddy = EigenVector<T>::Flatten(*tensor_ddy);
        Eigen::DSizes<int, 1> size(tensor_ddy->numel());
        auto dx = EigenVector<T>::Flatten(*tensor_dx);
        dx.device(dev) = ddy * dout.broadcast(size);
      }

      if (tensor_dy) {
352
        ctx.template Alloc<T>(tensor_dy);
353 354 355 356 357 358 359 360
        auto ddx = EigenVector<T>::Flatten(*tensor_ddx);
        Eigen::DSizes<int, 1> size(tensor_ddx->numel());

        auto dy = EigenVector<T>::Flatten(*tensor_dy);
        dy.device(dev) = ddx * dout.broadcast(size);
      }

      if (tensor_ddout) {
361
        ctx.template Alloc<T>(tensor_ddout);
362 363 364 365 366 367 368 369 370 371 372 373
        auto x = EigenVector<T>::Flatten(*tensor_x);
        auto y = EigenVector<T>::Flatten(*tensor_y);
        auto ddx = EigenVector<T>::Flatten(*tensor_ddx);
        auto ddy = EigenVector<T>::Flatten(*tensor_ddy);
        auto ddout = EigenVector<T>::Flatten(*tensor_ddout);
        ddout.device(dev) = (x * ddy + y * ddx).sum();
      }
    }
#else
    const auto* data_dout = tensor_dout->data<T>();

    if (tensor_dx) {
374
      auto* data_dx = ctx.template Alloc<T>(tensor_dx);
375 376 377 378 379 380 381 382 383 384 385 386 387 388
      const auto* data_ddy = tensor_ddy->data<T>();
      const DDim& dim = tensor_dx->dims();
      size_t N = static_cast<size_t>(product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dx[i] = data_dout[s] * data_ddy[i];
      }
    }

    if (tensor_dy) {
389
      auto* data_dy = ctx.template Alloc<T>(tensor_dy);
390 391 392 393 394 395 396 397 398 399 400 401 402 403
      const auto* data_ddx = tensor_ddx->data<T>();
      const DDim& dim = tensor_dy->dims();
      size_t N = static_cast<size_t>(product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dy[i] = data_dout[s] * data_ddx[i];
      }
    }

    if (tensor_ddout) {
404
      auto* data_ddout = ctx.template Alloc<T>(tensor_ddout);
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
      auto* data_x = tensor_x->data<T>();
      auto* data_y = tensor_y->data<T>();
      auto* data_ddx = tensor_ddx->data<T>();
      auto* data_ddy = tensor_ddy->data<T>();

      const DDim& dim = tensor_dy->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;
      bool new_s = false;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) {
          ++s;
          new_s = true;
        }
        if (new_s) {
          data_ddout[s] = data_x[i] * data_ddy[i] + data_y[i] * data_ddx[i];
        } else {
          data_ddout[s] += data_x[i] * data_ddy[i] + data_y[i] * data_ddx[i];
        }
        new_s = false;
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T, typename Enabel = void>
struct DotTripleGradFunction {
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* in_tensor_x,
                  const DenseTensor* in_tensor_y,
                  const DenseTensor* in_tensor_ddx,
                  const DenseTensor* in_tensor_ddy,
                  const DenseTensor* in_tensor_d_dx,
                  const DenseTensor* in_tensor_d_dy,
                  const DenseTensor* in_tensor_dout,
                  const DenseTensor* in_tensor_d_ddout,
                  DenseTensor* out_tensor_d_x,
                  DenseTensor* out_tensor_d_y,
                  DenseTensor* out_tensor_d_dout,
                  DenseTensor* out_tensor_d_ddx,
                  DenseTensor* out_tensor_d_ddy);
};

// TODO(wuweilong): enable this function when the unittests framewark for multi
// grad is ok (dtype: complex64 or complex128).
template <typename DeviceContext, typename T>
454
struct DotTripleGradFunction<DeviceContext, T, phi::funcs::EnableComplex<T>> {
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* in_tensor_x,
                  const DenseTensor* in_tensor_y,
                  const DenseTensor* in_tensor_ddx,
                  const DenseTensor* in_tensor_ddy,
                  const DenseTensor* in_tensor_d_dx,
                  const DenseTensor* in_tensor_d_dy,
                  const DenseTensor* in_tensor_dout,
                  const DenseTensor* in_tensor_d_ddout,
                  DenseTensor* out_tensor_d_x,
                  DenseTensor* out_tensor_d_y,
                  DenseTensor* out_tensor_d_dout,
                  DenseTensor* out_tensor_d_ddx,
                  DenseTensor* out_tensor_d_ddy) {
#if defined(__NVCC__) || defined(__HIPCC__)
    if (1 == in_tensor_d_ddout->dims().size()) {
      DenseTensor in_tensor_d_ddout_help;
      auto& dev = *ctx.eigen_device();
      if (out_tensor_d_x || out_tensor_d_y) {
        in_tensor_d_ddout_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_d_ddout);
      }
      if (out_tensor_d_x) {
        auto ddy = EigenVector<T>::Flatten(*in_tensor_ddy);
        Eigen::DSizes<int, 1> size(in_tensor_ddy->numel());
        auto d_x = EigenVector<T>::Flatten(*out_tensor_d_x);
        auto d_ddout = EigenVector<T>::Flatten(in_tensor_d_ddout_help);
        d_x.device(dev) = ddy * d_ddout.broadcast(size);
      }

      if (out_tensor_d_y) {
        auto ddx = EigenVector<T>::Flatten(*in_tensor_ddx);
        Eigen::DSizes<int, 1> size(in_tensor_ddx->numel());
        auto d_y = EigenVector<T>::Flatten(*out_tensor_d_y);
        auto d_ddout = EigenVector<T>::Flatten(in_tensor_d_ddout_help);
        d_y.device(dev) = ddx * d_ddout.broadcast(size);
      }

      if (out_tensor_d_dout) {
        DenseTensor in_tensor_ddx_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_ddx);
        DenseTensor in_tensor_ddy_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_ddy);

        auto ddx = EigenVector<T>::Flatten(in_tensor_ddx_help);
        auto ddy = EigenVector<T>::Flatten(in_tensor_ddy_help);
        auto d_dx = EigenVector<T>::Flatten(*in_tensor_d_dx);
        auto d_dy = EigenVector<T>::Flatten(*in_tensor_d_dy);
        auto d_dout = EigenVector<T>::Flatten(*out_tensor_d_dout);
        d_dout.device(dev) = (ddx * d_dy + ddy * d_dx).sum();
      }

      if (out_tensor_d_ddx) {
        DenseTensor in_tensor_dout_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_dout);
        DenseTensor in_tensor_y_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_y);

        auto dout = EigenVector<T>::Flatten(in_tensor_dout_help);
        auto y = EigenVector<T>::Flatten(in_tensor_y_help);
        auto d_ddout = EigenVector<T>::Flatten(*in_tensor_d_ddout);
        auto d_dy = EigenVector<T>::Flatten(*in_tensor_d_dy);
        auto d_ddx = EigenVector<T>::Flatten(*out_tensor_d_ddx);
        Eigen::DSizes<int, 1> size(in_tensor_y->numel());
        d_ddx.device(dev) =
            (dout.broadcast(size) * d_dy + y * d_ddout.broadcast(size));
      }

      if (out_tensor_d_ddy) {
        DenseTensor in_tensor_dout_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_dout);
        DenseTensor in_tensor_x_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_x);

        auto dout = EigenVector<T>::Flatten(in_tensor_dout_help);
        auto x = EigenVector<T>::Flatten(in_tensor_x_help);
        auto d_ddout = EigenVector<T>::Flatten(*in_tensor_d_ddout);
        auto d_dx = EigenVector<T>::Flatten(*in_tensor_d_dx);
        auto d_ddy = EigenVector<T>::Flatten(*out_tensor_d_ddy);
        Eigen::DSizes<int, 1> size(in_tensor_x->numel());
        d_ddy.device(dev) =
            (dout.broadcast(size) * d_dx + x * d_ddout.broadcast(size));
      }
    }
#else
    const auto* data_d_ddout = in_tensor_d_ddout->data<T>();

    if (out_tensor_d_x) {
543
      auto* data_d_x = ctx.template Alloc<T>(out_tensor_d_x);
544 545 546 547 548 549 550 551 552 553 554 555 556 557
      const auto* data_ddy = in_tensor_ddy->data<T>();

      const DDim& dim = out_tensor_d_x->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_x[i] = T(data_ddy[i].real, -data_ddy[i].imag) * data_d_ddout[s];
      }
    }

    if (out_tensor_d_y) {
558
      auto* data_d_y = ctx.template Alloc<T>(out_tensor_d_y);
559 560 561 562 563 564 565 566 567 568 569 570 571 572
      const auto* data_ddx = in_tensor_ddx->data<T>();

      const DDim& dim = out_tensor_d_y->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_y[i] = T(data_ddx[i].real, -data_ddx[i].imag) * data_d_ddout[s];
      }
    }

    if (out_tensor_d_dout) {
573
      auto* data_d_dout = ctx.template Alloc<T>(out_tensor_d_dout);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
      auto* data_ddx = in_tensor_ddx->data<T>();
      auto* data_ddy = in_tensor_ddy->data<T>();
      auto* data_d_dx = in_tensor_d_dx->data<T>();
      auto* data_d_dy = in_tensor_d_dy->data<T>();

      const DDim& dim = out_tensor_d_dout->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;
      bool new_s = false;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) {
          ++s;
          new_s = true;
        }
        if (new_s) {
          data_d_dout[s] =
              T(data_ddy[i].real, -data_ddy[i].imag) * data_d_dx[i] +
              T(data_ddx[i].real, -data_ddx[i].imag) * data_d_dy[i];
        } else {
          data_d_dout[s] +=
              T(data_ddy[i].real, -data_ddy[i].imag) * data_d_dx[i] +
              T(data_ddx[i].real, -data_ddx[i].imag) * data_d_dy[i];
        }
        new_s = false;
      }
    }

    if (out_tensor_d_ddx) {
604
      auto* data_d_ddx = ctx.template Alloc<T>(out_tensor_d_ddx);
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
      auto* data_dout = in_tensor_dout->data<T>();
      auto* data_d_dy = in_tensor_d_dy->data<T>();
      auto* data_y = in_tensor_y->data<T>();
      auto* data_d_ddout = in_tensor_d_ddout->data<T>();

      const DDim& dim = out_tensor_d_ddx->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_ddx[i] =
            T(data_dout[s].real, -data_dout[s].imag) * data_d_dy[i] +
            T(data_y[i].real, -data_y[i].imag) * data_d_ddout[s];
      }
    }

    if (out_tensor_d_ddy) {
624
      auto* data_d_ddy = ctx.template Alloc<T>(out_tensor_d_ddy);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
      auto* data_dout = in_tensor_dout->data<T>();
      auto* data_d_dx = in_tensor_d_dx->data<T>();
      auto* data_x = in_tensor_x->data<T>();
      auto* data_d_ddout = in_tensor_d_ddout->data<T>();

      const DDim& dim = out_tensor_d_ddy->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_ddy[i] =
            T(data_dout[s].real, -data_dout[s].imag) * data_d_dx[i] +
            T(data_x[i].real, -data_x[i].imag) * data_d_ddout[s];
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T>
647
struct DotTripleGradFunction<DeviceContext, T, phi::funcs::DisableComplex<T>> {
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* in_tensor_x,
                  const DenseTensor* in_tensor_y,
                  const DenseTensor* in_tensor_ddx,
                  const DenseTensor* in_tensor_ddy,
                  const DenseTensor* in_tensor_d_dx,
                  const DenseTensor* in_tensor_d_dy,
                  const DenseTensor* in_tensor_dout,
                  const DenseTensor* in_tensor_d_ddout,
                  DenseTensor* out_tensor_d_x,
                  DenseTensor* out_tensor_d_y,
                  DenseTensor* out_tensor_d_dout,
                  DenseTensor* out_tensor_d_ddx,
                  DenseTensor* out_tensor_d_ddy) {
#if defined(__NVCC__) || defined(__HIPCC__)
    if (1 == in_tensor_d_ddout->dims().size()) {
      auto& dev = *ctx.eigen_device();
      auto d_ddout = EigenVector<T>::Flatten(*in_tensor_d_ddout);
      if (out_tensor_d_x) {
667
        ctx.template Alloc<T>(out_tensor_d_x);
668 669 670 671 672 673 674
        auto ddy = EigenVector<T>::Flatten(*in_tensor_ddy);
        Eigen::DSizes<int, 1> size(in_tensor_ddy->numel());
        auto d_x = EigenVector<T>::Flatten(*out_tensor_d_x);
        d_x.device(dev) = ddy * d_ddout.broadcast(size);
      }

      if (out_tensor_d_y) {
675
        ctx.template Alloc<T>(out_tensor_d_y);
676 677 678 679 680 681 682 683
        auto ddx = EigenVector<T>::Flatten(*in_tensor_ddx);
        Eigen::DSizes<int, 1> size(in_tensor_ddx->numel());

        auto d_y = EigenVector<T>::Flatten(*out_tensor_d_y);
        d_y.device(dev) = ddx * d_ddout.broadcast(size);
      }

      if (out_tensor_d_dout) {
684
        ctx.template Alloc<T>(out_tensor_d_dout);
685 686 687 688 689 690 691 692 693
        auto ddx = EigenVector<T>::Flatten(*in_tensor_ddx);
        auto ddy = EigenVector<T>::Flatten(*in_tensor_ddy);
        auto d_dx = EigenVector<T>::Flatten(*in_tensor_d_dx);
        auto d_dy = EigenVector<T>::Flatten(*in_tensor_d_dy);
        auto d_dout = EigenVector<T>::Flatten(*out_tensor_d_dout);
        d_dout.device(dev) = (ddx * d_dy + ddy * d_dx).sum();
      }

      if (out_tensor_d_ddx) {
694
        ctx.template Alloc<T>(out_tensor_d_ddx);
695 696 697 698 699 700 701 702 703 704 705
        auto dout = EigenVector<T>::Flatten(*in_tensor_dout);
        auto y = EigenVector<T>::Flatten(*in_tensor_y);
        auto d_ddout = EigenVector<T>::Flatten(*in_tensor_d_ddout);
        auto d_dy = EigenVector<T>::Flatten(*in_tensor_d_dy);
        auto d_ddx = EigenVector<T>::Flatten(*out_tensor_d_ddx);
        Eigen::DSizes<int, 1> size(in_tensor_y->numel());
        d_ddx.device(dev) =
            (dout.broadcast(size) * d_dy + y * d_ddout.broadcast(size));
      }

      if (out_tensor_d_ddy) {
706
        ctx.template Alloc<T>(out_tensor_d_ddy);
707 708 709 710 711 712 713 714 715 716 717 718 719 720
        auto dout = EigenVector<T>::Flatten(*in_tensor_dout);
        auto x = EigenVector<T>::Flatten(*in_tensor_x);
        auto d_ddout = EigenVector<T>::Flatten(*in_tensor_d_ddout);
        auto d_dx = EigenVector<T>::Flatten(*in_tensor_d_dx);
        auto d_ddy = EigenVector<T>::Flatten(*out_tensor_d_ddy);
        Eigen::DSizes<int, 1> size(in_tensor_x->numel());
        d_ddy.device(dev) =
            (dout.broadcast(size) * d_dx + x * d_ddout.broadcast(size));
      }
    }
#else
    const auto* data_d_ddout = in_tensor_d_ddout->data<T>();

    if (out_tensor_d_x) {
721
      auto* data_d_x = ctx.template Alloc<T>(out_tensor_d_x);
722 723 724 725 726 727 728 729 730 731 732 733 734 735
      const auto* data_ddy = in_tensor_ddy->data<T>();

      const DDim& dim = out_tensor_d_x->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_x[i] = data_ddy[i] * data_d_ddout[s];
      }
    }

    if (out_tensor_d_y) {
736
      auto* data_d_y = ctx.template Alloc<T>(out_tensor_d_y);
737 738 739 740 741 742 743 744 745 746 747 748 749 750
      const auto* data_ddx = in_tensor_ddx->data<T>();

      const DDim& dim = out_tensor_d_y->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_y[i] = data_ddx[i] * data_d_ddout[s];
      }
    }

    if (out_tensor_d_dout) {
751
      auto* data_d_dout = ctx.template Alloc<T>(out_tensor_d_dout);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
      auto* data_ddx = in_tensor_ddx->data<T>();
      auto* data_ddy = in_tensor_ddy->data<T>();
      auto* data_d_dx = in_tensor_d_dx->data<T>();
      auto* data_d_dy = in_tensor_d_dy->data<T>();

      const DDim& dim = in_tensor_ddx->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;
      bool new_s = false;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) {
          ++s;
          new_s = true;
        }
        if (new_s) {
          data_d_dout[s] =
              data_ddy[i] * data_d_dx[i] + data_ddx[i] * data_d_dy[i];
        } else {
          data_d_dout[s] +=
              data_ddy[i] * data_d_dx[i] + data_ddx[i] * data_d_dy[i];
        }
        new_s = false;
      }
    }

    if (out_tensor_d_ddx) {
779
      auto* data_d_ddx = ctx.template Alloc<T>(out_tensor_d_ddx);
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
      auto* data_dout = in_tensor_dout->data<T>();
      auto* data_d_dy = in_tensor_d_dy->data<T>();
      auto* data_y = in_tensor_y->data<T>();
      auto* data_d_ddout = in_tensor_d_ddout->data<T>();

      const DDim& dim = out_tensor_d_ddx->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_ddx[i] =
            data_dout[s] * data_d_dy[i] + data_y[i] * data_d_ddout[s];
      }
    }

    if (out_tensor_d_ddy) {
798
      auto* data_d_ddy = ctx.template Alloc<T>(out_tensor_d_ddy);
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
      auto* data_dout = in_tensor_dout->data<T>();
      auto* data_d_dx = in_tensor_d_dx->data<T>();
      auto* data_x = in_tensor_x->data<T>();
      auto* data_d_ddout = in_tensor_d_ddout->data<T>();

      const DDim& dim = out_tensor_d_ddy->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_ddy[i] =
            data_dout[s] * data_d_dx[i] + data_x[i] * data_d_ddout[s];
      }
    }
#endif
  }
};

template <typename T, typename Context>
void DotGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   const DenseTensor& dout,
                   DenseTensor* dx,
                   DenseTensor* dy) {
  if (dx) {
827
    dev_ctx.template Alloc<T>(dx);
828 829
  }
  if (dy) {
830
    dev_ctx.template Alloc<T>(dy);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
  }
  DotGradFunction<Context, T>()(dev_ctx, &x, &y, &dout, dx, dy);
}

template <typename T, typename Context>
void DotDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& y,
                         const DenseTensor& ddx,
                         const DenseTensor& ddy,
                         const DenseTensor& dout,
                         DenseTensor* dx,
                         DenseTensor* dy,
                         DenseTensor* ddout) {
  if (dx) {
846
    dev_ctx.template Alloc<T>(dx);
847 848
  }
  if (dy) {
849
    dev_ctx.template Alloc<T>(dy);
850 851
  }
  if (ddout) {
852
    dev_ctx.template Alloc<T>(ddout);
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
  }
  DotDoubleGradFunction<Context, T>()(
      dev_ctx, &x, &y, &dout, ddx, ddy, dx, dy, ddout);
}

template <typename T, typename Context>
void DotTripleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& y,
                         const DenseTensor& ddx,
                         const DenseTensor& ddy,
                         const DenseTensor& d_dx,
                         const DenseTensor& d_dy,
                         const DenseTensor& dout,
                         const DenseTensor& d_ddout,
                         DenseTensor* d_x,
                         DenseTensor* d_y,
                         DenseTensor* d_ddx,
                         DenseTensor* d_ddy,
                         DenseTensor* d_dout) {
  if (d_x) {
874
    dev_ctx.template Alloc<T>(d_x);
875 876
  }
  if (d_y) {
877
    dev_ctx.template Alloc<T>(d_y);
878 879
  }
  if (d_ddx) {
880
    dev_ctx.template Alloc<T>(d_ddx);
881 882
  }
  if (d_ddy) {
883
    dev_ctx.template Alloc<T>(d_ddy);
884 885
  }
  if (d_dout) {
886
    dev_ctx.template Alloc<T>(d_dout);
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
  }

  DotTripleGradFunction<Context, T>()(dev_ctx,
                                      &x,
                                      &y,
                                      ddx,
                                      ddy,
                                      d_dx,
                                      d_dy,
                                      dout,
                                      d_ddout,
                                      d_x,
                                      d_y,
                                      d_dout,
                                      d_ddx,
                                      d_ddy);
}

905
}  // namespace phi