affine_grid_op.h 7.4 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <vector>
17

W
whs 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
20 21
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
W
whs 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

using Array1 = Eigen::DSizes<int64_t, 1>;
using Array2 = Eigen::DSizes<int64_t, 2>;
using Array3 = Eigen::DSizes<int64_t, 3>;
using Array4 = Eigen::DSizes<int64_t, 4>;

/**
 *Return a tensor with evenly spaced numbers over a specified interval.
 */
template <typename DeviceContext, typename T>
struct Linspace {
41 42
  void operator()(T start, T end, int count, bool align_corners,
                  framework::Tensor* numbers,
43
                  const framework::ExecutionContext& ctx);
W
whs 已提交
44 45
};

46
template <typename DeviceContext, typename T>
47
inline void GetIdxMap(int n, int h, int w, bool align_corners, Tensor* grid,
48 49 50 51 52 53 54
                      const framework::ExecutionContext& ctx) {
  auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
  grid->mutable_data<T>({n, h, w, 3}, ctx.GetPlace());
  auto grid_t = EigenTensor<T, 4>::From(*grid);
  // Get indexes of height with shape [height, width, 1]
  Tensor h_idx;
  Linspace<DeviceContext, T> linspace;
55
  linspace((T)-1, (T)1, h, align_corners, &h_idx, ctx);
56 57 58
  auto h_idx_t = EigenTensor<T, 1>::From(h_idx);
  // Get indexes of width with shape [height, width, 1]
  Tensor w_idx;
59
  linspace((T)-1, (T)1, w, align_corners, &w_idx, ctx);
60 61 62 63
  auto w_idx_t = EigenTensor<T, 1>::From(w_idx);
  // Get constant ones tensor with shape [height, width, 1]
  Tensor ones;
  ones.mutable_data<T>({h, w, 1}, ctx.GetPlace());
64

65
  phi::funcs::SetConstant<DeviceContext, T>()(
66 67
      ctx.template device_context<DeviceContext>(), &ones, static_cast<T>(1));
  auto ones_t = EigenTensor<T, 3>::From(ones);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  // Get grid tensor with shape [n, h, w, 3] by concatenating h_idx, w_idx and
  // ones
  Tensor w_idx_map;
  w_idx_map.mutable_data<T>({h, w, 1}, ctx.GetPlace());
  auto w_idx_map_t = EigenTensor<T, 3>::From(w_idx_map);
  Tensor h_idx_map;
  h_idx_map.mutable_data<T>({h, w, 1}, ctx.GetPlace());
  auto h_idx_map_t = EigenTensor<T, 3>::From(h_idx_map);
  Tensor w_h_idx_map;
  w_h_idx_map.mutable_data<T>({h, w, 2}, ctx.GetPlace());
  auto w_h_idx_map_t = EigenTensor<T, 3>::From(w_h_idx_map);
  Tensor w_h_one_idx_map;
  w_h_one_idx_map.mutable_data<T>({h, w, 3}, ctx.GetPlace());
  auto w_h_one_idx_map_t = EigenTensor<T, 3>::From(w_h_one_idx_map);
  w_idx_map_t.device(place) = w_idx_t.reshape(Array2(1, w))
                                  .broadcast(Array2(h, 1))
                                  .reshape(Array3(h, w, 1));
  h_idx_map_t.device(place) = h_idx_t.reshape(Array2(1, h))
                                  .broadcast(Array2(w, 1))
                                  .shuffle(Array2(1, 0))
                                  .reshape(Array3(h, w, 1));

  w_h_idx_map_t.device(place) = w_idx_map_t.concatenate(h_idx_map_t, 2);
  w_h_one_idx_map_t.device(place) = w_h_idx_map_t.concatenate(ones_t, 2);
  grid_t.device(place) = w_h_one_idx_map_t.reshape(Array4(1, h, w, 3))
                             .broadcast(Array4(n, 1, 1, 1));
}

W
whs 已提交
96 97 98 99 100 101 102
template <typename DeviceContext, typename T>
class AffineGridOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* theta = ctx.Input<Tensor>("Theta");
    int n = theta->dims()[0];
    auto size_attr = ctx.Attr<std::vector<int>>("output_shape");
103
    auto align_corners = ctx.Attr<bool>("align_corners");
W
whs 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    int h = 0;
    int w = 0;
    if (size_attr.size() == 0) {
      auto* output_shape = ctx.Input<Tensor>("OutputShape");
      Tensor h_sizes;
      framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes);
      const int* h_size_data = h_sizes.data<int>();
      h = h_size_data[2];
      w = h_size_data[3];
    } else {
      h = size_attr[2];
      w = size_attr[3];
    }
    auto* output = ctx.Output<Tensor>("Output");
    output->mutable_data<T>({n, h, w, 2}, ctx.GetPlace());
119
    phi::funcs::SetConstant<DeviceContext, T>()(
W
whs 已提交
120 121 122
        ctx.template device_context<DeviceContext>(), output,
        static_cast<T>(0));
    Tensor grid;
123
    GetIdxMap<DeviceContext, T>(n, h, w, align_corners, &grid, ctx);
W
whs 已提交
124 125
    // output = grid * theta.T
    // TODO(wanghaoshuang): Refine batched matrix multiply
126
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
W
whs 已提交
127
    for (int i = 0; i < n; ++i) {
S
SunGaofeng 已提交
128 129
      Tensor sliced_grid = grid.Slice(i, i + 1).Resize(
          {static_cast<int64_t>(h) * static_cast<int64_t>(w), 3});
W
whs 已提交
130
      Tensor sliced_theta = theta->Slice(i, i + 1).Resize({2, 3});
S
SunGaofeng 已提交
131 132
      Tensor sliced_out = output->Slice(i, i + 1).Resize(
          {static_cast<int64_t>(h) * static_cast<int64_t>(w), 2});
W
whs 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146
      blas.MatMul(sliced_grid, false, sliced_theta, true, T(1), &sliced_out,
                  T(0));
    }
  }
};

template <typename DeviceContext, typename T>
class AffineGridGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto theta_grad = ctx.Output<Tensor>(framework::GradVarName("Theta"));
    int n = output_grad->dims()[0];
    auto size_attr = ctx.Attr<std::vector<int>>("output_shape");
147
    auto align_corners = ctx.Attr<bool>("align_corners");
W
whs 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161
    int h = 0;
    int w = 0;
    if (size_attr.size() == 0) {
      auto* output_shape = ctx.Input<Tensor>("OutputShape");
      Tensor h_sizes;
      framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes);
      const int* h_size_data = h_sizes.data<int>();
      h = h_size_data[2];
      w = h_size_data[3];
    } else {
      h = size_attr[2];
      w = size_attr[3];
    }
    theta_grad->mutable_data<T>({n, 2, 3}, ctx.GetPlace());
162
    phi::funcs::SetConstant<DeviceContext, T>()(
W
whs 已提交
163 164 165
        ctx.template device_context<DeviceContext>(), theta_grad,
        static_cast<T>(0));
    Tensor grid;
166
    GetIdxMap<DeviceContext, T>(n, h, w, align_corners, &grid, ctx);
W
whs 已提交
167 168
    // output = grid * theta.T
    // TODO(wanghaoshuang): Refine batched matrix multiply
169
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
W
whs 已提交
170
    for (int i = 0; i < n; ++i) {
S
SunGaofeng 已提交
171 172 173 174
      Tensor sliced_grid = grid.Slice(i, i + 1).Resize(
          {static_cast<int64_t>(h) * static_cast<int64_t>(w), 3});
      Tensor sliced_out_grad = output_grad->Slice(i, i + 1).Resize(
          {static_cast<int64_t>(h) * static_cast<int64_t>(w), 2});
W
whs 已提交
175 176 177 178 179 180 181 182 183
      Tensor sliced_theta_grad = theta_grad->Slice(i, i + 1).Resize({2, 3});
      blas.MatMul(sliced_out_grad, true, sliced_grid, false, T(1),
                  &sliced_theta_grad, T(0));
    }
  }
};

}  // namespace operators
}  // namespace paddle