prelu_op_plugin.h 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

N
nhzlx 已提交
17
#include <algorithm>
18
#include <string>
N
nhzlx 已提交
19
#include <vector>
20

N
nhzlx 已提交
21 22
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
23 24 25 26 27 28
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
29
namespace plugin {
30 31

class PReluPlugin : public PluginTensorRT {
N
nhzlx 已提交
32
  std::vector<float> weight_;
33
  float* p_gpu_weight_;
34
  std::string mode_;
35
  std::string data_format_;
36

37
 public:
38
  size_t getSerializationSize() const TRT_NOEXCEPT override {
N
nhzlx 已提交
39
    return getBaseSerializationSize() + SerializedSize(mode_.c_str()) +
40
           SerializedSize(data_format_.c_str()) + SerializedSize(weight_);
41 42 43 44 45
  }

  // TRT will call this func when we need to serialize the configuration of
  // tensorrt.
  // It should not be called by users.
46
  void serialize(void* buffer) const TRT_NOEXCEPT override {
N
nhzlx 已提交
47 48 49
    serializeBase(buffer);
    SerializeValue(&buffer, weight_);
    SerializeValue(&buffer, mode_.c_str());
50
    SerializeValue(&buffer, data_format_.c_str());
51 52
  }

53
  PReluPlugin(const float* weight, const int weight_num,
54 55
              std::string const& mode, std::string const& data_format)
      : mode_(mode), data_format_(data_format) {
N
nhzlx 已提交
56 57 58
    weight_.resize(weight_num);
    std::copy(weight, weight + weight_num, weight_.data());
  }
59 60 61

  // It was used for tensorrt deserialization.
  // It should not be called by users.
62
  PReluPlugin(void const* serialData, size_t serialLength) {
N
nhzlx 已提交
63 64
    deserializeBase(serialData, serialLength);
    DeserializeValue(&serialData, &serialLength, &weight_);
65
    const char* prelu_mode;
N
nhzlx 已提交
66 67
    DeserializeValue(&serialData, &serialLength, &prelu_mode);
    mode_ = std::string(prelu_mode);
68 69 70
    const char* prelu_data_format;
    DeserializeValue(&serialData, &serialLength, &prelu_data_format);
    data_format_ = std::string(prelu_data_format);
71
  }
72
  ~PReluPlugin() {}
73 74
  int initialize() TRT_NOEXCEPT override;
  void terminate() TRT_NOEXCEPT override;
75

76
  PReluPlugin* clone() const TRT_NOEXCEPT override {
77 78
    auto* ptr =
        new PReluPlugin(weight_.data(), weight_.size(), mode_, data_format_);
79 80
    ptr->p_gpu_weight_ = p_gpu_weight_;
    return ptr;
N
nhzlx 已提交
81
  }
82

83 84 85 86
  const char* getPluginType() const TRT_NOEXCEPT override {
    return "prelu_plugin";
  }
  int getNbOutputs() const TRT_NOEXCEPT override { return 1; }
87
  nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* inputs,
88
                                     int nbInputDims) TRT_NOEXCEPT override;
89
#if IS_TRT_VERSION_LT(8000)
90
  int enqueue(int batchSize, const void* const* inputs, void** outputs,
91 92 93
#else
  int enqueue(int batchSize, const void* const* inputs, void* const* outputs,
#endif
94
              void* workspace, cudaStream_t stream) TRT_NOEXCEPT override;
95 96
};

97 98
class PReluPluginCreator : public TensorRTPluginCreator {
 public:
99 100 101
  const char* getPluginName() const TRT_NOEXCEPT override {
    return "prelu_plugin";
  }
102

103
  const char* getPluginVersion() const TRT_NOEXCEPT override { return "1"; }
104

105 106 107
  nvinfer1::IPluginV2* deserializePlugin(
      const char* name, const void* serial_data,
      size_t serial_length) TRT_NOEXCEPT override {
108 109 110 111 112
    return new PReluPlugin(serial_data, serial_length);
  }
};
REGISTER_TRT_PLUGIN_V2(PReluPluginCreator);

113 114 115 116
#if IS_TRT_VERSION_GE(6000)
class PReluPluginDynamic : public DynamicPluginTensorRT {
 public:
  PReluPluginDynamic(const float* weight, const int weight_num,
117 118
                     std::string const& mode, std::string const& data_format)
      : mode_(mode), data_format_(data_format) {
119 120 121 122
    weight_.resize(weight_num);
    std::copy(weight, weight + weight_num, weight_.data());
  }

123
  PReluPluginDynamic(void const* serialData, size_t serialLength);
124
  ~PReluPluginDynamic() {}
125
  nvinfer1::IPluginV2DynamicExt* clone() const TRT_NOEXCEPT override {
126 127
    auto ptr = new PReluPluginDynamic(weight_.data(), weight_.size(), mode_,
                                      data_format_);
128 129
    ptr->p_gpu_weight_ = p_gpu_weight_;
    return ptr;
130 131
  }

132 133 134 135 136 137
  const char* getPluginType() const TRT_NOEXCEPT override {
    return "prelu_plugin_dynamic";
  }
  int getNbOutputs() const TRT_NOEXCEPT override { return 1; }
  int initialize() TRT_NOEXCEPT override;
  void terminate() TRT_NOEXCEPT override;
138

139 140
  size_t getSerializationSize() const TRT_NOEXCEPT override;
  void serialize(void* buffer) const TRT_NOEXCEPT override;
141 142 143

  nvinfer1::DimsExprs getOutputDimensions(
      int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
144
      nvinfer1::IExprBuilder& expr_builder) TRT_NOEXCEPT override;
145 146 147

  bool supportsFormatCombination(int pos,
                                 const nvinfer1::PluginTensorDesc* inOut,
148 149
                                 int nbInputs,
                                 int nbOutputs) TRT_NOEXCEPT override;
150 151 152 153

  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
                       int nbInputs,
                       const nvinfer1::DynamicPluginTensorDesc* out,
154
                       int nbOutputs) TRT_NOEXCEPT override {}
155 156 157 158

  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
                          int nbInputs,
                          const nvinfer1::PluginTensorDesc* outputs,
159
                          int nbOutputs) const TRT_NOEXCEPT override {
160 161 162 163 164 165
    return 0;
  }

  int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
              const nvinfer1::PluginTensorDesc* outputDesc,
              const void* const* inputs, void* const* outputs, void* workspace,
166 167 168 169
              cudaStream_t stream) TRT_NOEXCEPT override;
  nvinfer1::DataType getOutputDataType(
      int index, const nvinfer1::DataType* inputTypes,
      int nbInputs) const TRT_NOEXCEPT override;
170

171
  void destroy() TRT_NOEXCEPT override { delete this; }
172 173 174 175 176

 private:
  std::vector<float> weight_;
  float* p_gpu_weight_;
  std::string mode_;
177
  std::string data_format_;
178 179 180
};
#endif

181 182
class PReluPluginDynamicCreator : public TensorRTPluginCreator {
 public:
183 184 185
  const char* getPluginName() const TRT_NOEXCEPT override {
    return "prelu_plugin_dynamic";
  }
186

187
  const char* getPluginVersion() const TRT_NOEXCEPT override { return "1"; }
188

189 190 191
  nvinfer1::IPluginV2* deserializePlugin(
      const char* name, const void* serial_data,
      size_t serial_length) TRT_NOEXCEPT override {
192 193 194 195 196
    return new PReluPluginDynamic(serial_data, serial_length);
  }
};
REGISTER_TRT_PLUGIN_V2(PReluPluginDynamicCreator);

197
}  // namespace plugin
198 199 200
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle