data_feed.cc 97.3 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

D
dongdaxiang 已提交
15 16 17 18 19
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

20
#include "paddle/fluid/framework/data_feed.h"
21

T
Thunderbrook 已提交
22
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
D
dongdaxiang 已提交
23
#ifdef _LINUX
D
dongdaxiang 已提交
24
#include <stdio_ext.h>
H
hutuxian 已提交
25 26
#include <sys/mman.h>
#include <sys/stat.h>
D
dongdaxiang 已提交
27
#endif
28
#include "io/fs.h"
H
hutuxian 已提交
29
#include "paddle/fluid/platform/monitor.h"
30
#include "paddle/fluid/platform/timer.h"
W
Wang Guibao 已提交
31

H
hutuxian 已提交
32
USE_INT_STAT(STAT_total_feasign_num_in_mem);
Y
yaoxuefeng 已提交
33
DECLARE_bool(enable_ins_parser_file);
W
Wang Guibao 已提交
34 35 36
namespace paddle {
namespace framework {

T
Thunderbrook 已提交
37 38 39 40 41
DLManager& global_dlmanager_pool() {
  static DLManager manager;
  return manager;
}

Y
yaoxuefeng 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
class BufferedLineFileReader {
  typedef std::function<bool()> SampleFunc;
  static const int MAX_FILE_BUFF_SIZE = 4 * 1024 * 1024;
  class FILEReader {
   public:
    explicit FILEReader(FILE* fp) : fp_(fp) {}
    int read(char* buf, int len) { return fread(buf, sizeof(char), len, fp_); }

   private:
    FILE* fp_;
  };

 public:
  typedef std::function<bool(const std::string&)> LineFunc;

 private:
  template <typename T>
  int read_lines(T* reader, LineFunc func, int skip_lines) {
    int lines = 0;
    size_t ret = 0;
    char* ptr = NULL;
    char* eol = NULL;
    total_len_ = 0;
    error_line_ = 0;

    SampleFunc spfunc = get_sample_func();
    std::string x;
    while (!is_error() && (ret = reader->read(buff_, MAX_FILE_BUFF_SIZE)) > 0) {
      total_len_ += ret;
      ptr = buff_;
      eol = reinterpret_cast<char*>(memchr(ptr, '\n', ret));
      while (eol != NULL) {
        int size = static_cast<int>((eol - ptr) + 1);
        x.append(ptr, size - 1);
        ++lines;
        if (lines > skip_lines && spfunc()) {
          if (!func(x)) {
            ++error_line_;
          }
        }

        x.clear();
        ptr += size;
        ret -= size;
        eol = reinterpret_cast<char*>(memchr(ptr, '\n', ret));
      }
      if (ret > 0) {
        x.append(ptr, ret);
      }
    }
    if (!is_error() && !x.empty()) {
      ++lines;
      if (lines > skip_lines && spfunc()) {
        if (!func(x)) {
          ++error_line_;
        }
      }
    }
    return lines;
  }

 public:
  BufferedLineFileReader()
      : random_engine_(std::random_device()()),
        uniform_distribution_(0.0f, 1.0f) {
    total_len_ = 0;
    sample_line_ = 0;
    buff_ =
        reinterpret_cast<char*>(calloc(MAX_FILE_BUFF_SIZE + 1, sizeof(char)));
  }
  ~BufferedLineFileReader() { free(buff_); }

  int read_file(FILE* fp, LineFunc func, int skip_lines) {
    FILEReader reader(fp);
    return read_lines<FILEReader>(&reader, func, skip_lines);
  }
  uint64_t file_size(void) { return total_len_; }
  void set_sample_rate(float r) { sample_rate_ = r; }
  size_t get_sample_line() { return sample_line_; }
  bool is_error(void) { return (error_line_ > 10); }

 private:
  SampleFunc get_sample_func() {
    if (std::abs(sample_rate_ - 1.0f) < 1e-5f) {
      return [this](void) { return true; };
    }
    return [this](void) {
      return (uniform_distribution_(random_engine_) < sample_rate_);
    };
  }

 private:
  char* buff_ = nullptr;
  uint64_t total_len_ = 0;

  std::default_random_engine random_engine_;
  std::uniform_real_distribution<float> uniform_distribution_;
  float sample_rate_ = 1.0f;
  size_t sample_line_ = 0;
  size_t error_line_ = 0;
};
143
void RecordCandidateList::ReSize(size_t length) {
144 145 146 147 148 149 150 151 152
  mutex_.lock();
  capacity_ = length;
  CHECK(capacity_ > 0);  // NOLINT
  candidate_list_.clear();
  candidate_list_.resize(capacity_);
  full_ = false;
  cur_size_ = 0;
  total_size_ = 0;
  mutex_.unlock();
153 154 155
}

void RecordCandidateList::ReInit() {
156 157 158 159 160
  mutex_.lock();
  full_ = false;
  cur_size_ = 0;
  total_size_ = 0;
  mutex_.unlock();
161 162 163 164
}

void RecordCandidateList::AddAndGet(const Record& record,
                                    RecordCandidate* result) {
165
  mutex_.lock();
166
  size_t index = 0;
167
  ++total_size_;
168
  auto fleet_ptr = FleetWrapper::GetInstance();
169 170 171
  if (!full_) {
    candidate_list_[cur_size_++] = record;
    full_ = (cur_size_ == capacity_);
172
  } else {
173 174 175 176
    CHECK(cur_size_ == capacity_);
    index = fleet_ptr->LocalRandomEngine()() % total_size_;
    if (index < capacity_) {
      candidate_list_[index] = record;
177 178
    }
  }
179 180 181
  index = fleet_ptr->LocalRandomEngine()() % cur_size_;
  *result = candidate_list_[index];
  mutex_.unlock();
182 183
}

W
Wang Guibao 已提交
184 185 186 187
void DataFeed::AddFeedVar(Variable* var, const std::string& name) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (name == use_slots_[i]) {
188 189 190 191 192
      if (var == nullptr) {
        feed_vec_[i] = nullptr;
      } else {
        feed_vec_[i] = var->GetMutable<LoDTensor>();
      }
W
Wang Guibao 已提交
193 194 195 196 197
    }
  }
}

bool DataFeed::SetFileList(const std::vector<std::string>& files) {
198
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
W
Wang Guibao 已提交
199
  CheckInit();
200 201
  // Do not set finish_set_filelist_ flag,
  // since a user may set file many times after init reader
W
Wang Guibao 已提交
202 203 204 205 206 207 208
  filelist_.assign(files.begin(), files.end());

  finish_set_filelist_ = true;
  return true;
}

void DataFeed::SetBatchSize(int batch_size) {
209 210 211
  PADDLE_ENFORCE_GT(batch_size, 0,
                    platform::errors::InvalidArgument(
                        "Batch size %d is illegal.", batch_size));
W
Wang Guibao 已提交
212 213 214 215
  default_batch_size_ = batch_size;
}

bool DataFeed::PickOneFile(std::string* filename) {
216 217 218 219 220 221 222
  PADDLE_ENFORCE_NOT_NULL(
      mutex_for_pick_file_,
      platform::errors::PreconditionNotMet(
          "You should call SetFileListMutex before PickOneFile"));
  PADDLE_ENFORCE_NOT_NULL(
      file_idx_, platform::errors::PreconditionNotMet(
                     "You should call SetFileListIndex before PickOneFile"));
223
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
224
  VLOG(4) << "filelist_ size: " << filelist_.size();
225
  if (*file_idx_ == filelist_.size()) {
226
    VLOG(3) << "DataFeed::PickOneFile no more file to pick";
W
Wang Guibao 已提交
227 228
    return false;
  }
229 230
  VLOG(3) << "file_idx_=" << *file_idx_;
  *filename = filelist_[(*file_idx_)++];
W
Wang Guibao 已提交
231 232 233 234
  return true;
}

void DataFeed::CheckInit() {
235 236 237
  PADDLE_ENFORCE_EQ(
      finish_init_, true,
      platform::errors::PreconditionNotMet("DataFeed initialization failed."));
W
Wang Guibao 已提交
238 239 240
}

void DataFeed::CheckSetFileList() {
241 242 243
  PADDLE_ENFORCE_EQ(
      finish_set_filelist_, true,
      platform::errors::PreconditionNotMet("DataFeed set filelist failed."));
W
Wang Guibao 已提交
244 245 246
}

void DataFeed::CheckStart() {
247 248 249
  PADDLE_ENFORCE_EQ(finish_start_, true,
                    platform::errors::PreconditionNotMet(
                        "Datafeed has not started running yet."));
W
Wang Guibao 已提交
250 251
}

H
hutuxian 已提交
252 253 254 255 256 257 258
void DataFeed::AssignFeedVar(const Scope& scope) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    feed_vec_[i] = scope.FindVar(use_slots_[i])->GetMutable<LoDTensor>();
  }
}

259 260 261 262 263 264
void DataFeed::CopyToFeedTensor(void* dst, const void* src, size_t size) {
  if (platform::is_cpu_place(this->place_)) {
    memcpy(dst, src, size);
  } else {
#ifdef PADDLE_WITH_CUDA
    cudaMemcpy(dst, src, size, cudaMemcpyHostToDevice);
265 266
#elif defined(PADDLE_WITH_HIP)
    hipMemcpy(dst, src, size, hipMemcpyHostToDevice);
267 268
#elif defined(PADDLE_WITH_XPU_KP)
    xpu_memcpy(dst, src, size, XPUMemcpyKind::XPU_HOST_TO_DEVICE);
269
#else
270
    PADDLE_THROW(platform::errors::Unimplemented(
271 272
        "Not supported GPU/ROCM, please compile with option WITH_GPU=ON or "
        "WITH_ROCM=ON."));
273 274 275 276
#endif
  }
}

W
Wang Guibao 已提交
277 278
template <typename T>
void PrivateQueueDataFeed<T>::SetQueueSize(int queue_size) {
279 280 281 282
  PADDLE_ENFORCE_GT(
      queue_size, 0,
      platform::errors::InvalidArgument(
          "Queue size %d is illegal in PrivateQueueDataFeed.", queue_size));
W
Wang Guibao 已提交
283
  queue_size_ = queue_size;
284
  queue_ = paddle::framework::MakeChannel<T>();
J
jiaqi 已提交
285
  queue_->SetCapacity(queue_size);
W
Wang Guibao 已提交
286 287 288 289
}

template <typename T>
bool PrivateQueueDataFeed<T>::Start() {
290
  VLOG(4) << "entering PrivateQueueDataFeed<T>::Start()";
W
Wang Guibao 已提交
291
  CheckSetFileList();
292 293
  read_thread_ = std::thread(&PrivateQueueDataFeed::ReadThread, this);
  read_thread_.detach();
W
Wang Guibao 已提交
294 295 296 297 298 299 300

  finish_start_ = true;
  return true;
}

template <typename T>
void PrivateQueueDataFeed<T>::ReadThread() {
D
dongdaxiang 已提交
301
#ifdef _LINUX
302
  VLOG(4) << "entering PrivateQueueDataFeed<T>::ReadThread()";
303 304 305 306 307 308 309
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    T instance;
    while (ParseOneInstanceFromPipe(&instance)) {
310
      queue_->Put(instance);
311
    }
W
Wang Guibao 已提交
312
  }
313
  queue_->Close();
D
dongdaxiang 已提交
314
#endif
W
Wang Guibao 已提交
315 316 317 318
}

template <typename T>
int PrivateQueueDataFeed<T>::Next() {
X
xjqbest 已提交
319
#ifdef _LINUX
W
Wang Guibao 已提交
320 321 322 323
  CheckStart();
  int index = 0;
  T ins_vec;
  while (index < default_batch_size_) {
324 325
    T instance;
    if (!queue_->Get(instance)) {
W
Wang Guibao 已提交
326 327 328 329 330 331 332 333 334
      break;
    }
    AddInstanceToInsVec(&ins_vec, instance, index++);
  }
  batch_size_ = index;
  if (batch_size_ != 0) {
    PutToFeedVec(ins_vec);
  }
  return batch_size_;
X
xjqbest 已提交
335 336 337
#else
  return 0;
#endif
W
Wang Guibao 已提交
338 339
}

340
// explicit instantiation
W
Wang Guibao 已提交
341 342
template class PrivateQueueDataFeed<std::vector<MultiSlotType>>;

343 344
template <typename T>
InMemoryDataFeed<T>::InMemoryDataFeed() {
345 346
  this->file_idx_ = nullptr;
  this->mutex_for_pick_file_ = nullptr;
J
jiaqi 已提交
347 348 349
  this->fp_ = nullptr;
  this->thread_id_ = 0;
  this->thread_num_ = 1;
350
  this->parse_ins_id_ = false;
351
  this->parse_uid_ = false;
352
  this->parse_content_ = false;
353 354 355
  this->parse_logkey_ = false;
  this->enable_pv_merge_ = false;
  this->current_phase_ = 1;  // 1:join ;0:update
J
jiaqi 已提交
356 357 358
  this->input_channel_ = nullptr;
  this->output_channel_ = nullptr;
  this->consume_channel_ = nullptr;
359 360 361 362
}

template <typename T>
bool InMemoryDataFeed<T>::Start() {
X
xjqbest 已提交
363
#ifdef _LINUX
364
  VLOG(4) << "entering InMemoryDataFeed<T>::Start()";
J
jiaqi 已提交
365 366 367 368 369
  this->CheckSetFileList();
  if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
    std::vector<T> data;
    input_channel_->Read(data);
    output_channel_->Write(std::move(data));
370
  }
X
xjqbest 已提交
371
#endif
Y
yaoxuefeng 已提交
372 373 374 375 376
  if (batch_offsets_.size() > 0) {
    VLOG(3) << "batch_size offsets: " << batch_offsets_.size();
    enable_heterps_ = true;
    this->offset_index_ = 0;
  }
J
jiaqi 已提交
377
  this->finish_start_ = true;
378 379 380 381 382
  return true;
}

template <typename T>
int InMemoryDataFeed<T>::Next() {
X
xjqbest 已提交
383
#ifdef _LINUX
J
jiaqi 已提交
384
  this->CheckStart();
Y
yaoxuefeng 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
  if (!enable_heterps_) {
    CHECK(output_channel_ != nullptr);
    CHECK(consume_channel_ != nullptr);
    VLOG(3) << "output_channel_ size=" << output_channel_->Size()
            << ", consume_channel_ size=" << consume_channel_->Size()
            << ", thread_id=" << thread_id_;
    int index = 0;
    T instance;
    std::vector<T> ins_vec;
    ins_vec.reserve(this->default_batch_size_);
    while (index < this->default_batch_size_) {
      if (output_channel_->Size() == 0) {
        break;
      }
      output_channel_->Get(instance);
      ins_vec.push_back(instance);
      ++index;
      consume_channel_->Put(std::move(instance));
    }
    this->batch_size_ = index;
    VLOG(3) << "batch_size_=" << this->batch_size_
            << ", thread_id=" << thread_id_;
    if (this->batch_size_ != 0) {
      PutToFeedVec(ins_vec);
    } else {
      VLOG(3) << "finish reading, output_channel_ size="
              << output_channel_->Size()
              << ", consume_channel_ size=" << consume_channel_->Size()
              << ", thread_id=" << thread_id_;
414
    }
D
dongdaxiang 已提交
415
  } else {
Y
yaoxuefeng 已提交
416
    VLOG(3) << "enable heter next: " << offset_index_
Y
yaoxuefeng 已提交
417 418 419 420 421 422 423 424 425
            << " batch_offsets: " << batch_offsets_.size();
    if (offset_index_ >= batch_offsets_.size()) {
      VLOG(3) << "offset_index: " << offset_index_
              << " batch_offsets: " << batch_offsets_.size();
      return 0;
    }
    auto& batch = batch_offsets_[offset_index_++];
    this->batch_size_ = batch.second;
    VLOG(3) << "batch_size_=" << this->batch_size_
J
jiaqi 已提交
426
            << ", thread_id=" << thread_id_;
Y
yaoxuefeng 已提交
427 428 429 430 431 432
    if (this->batch_size_ != 0) {
      PutToFeedVec(&records_[batch.first], this->batch_size_);
    } else {
      VLOG(3) << "finish reading for heterps, batch size zero, thread_id="
              << thread_id_;
    }
Y
yaoxuefeng 已提交
433
    VLOG(3) << "enable heter next: " << offset_index_
Y
yaoxuefeng 已提交
434 435
            << " batch_offsets: " << batch_offsets_.size()
            << " baych_size: " << this->batch_size_;
D
dongdaxiang 已提交
436
  }
J
jiaqi 已提交
437
  return this->batch_size_;
X
xjqbest 已提交
438 439 440
#else
  return 0;
#endif
441 442
}

443
template <typename T>
J
jiaqi 已提交
444 445 446 447 448 449 450
void InMemoryDataFeed<T>::SetInputChannel(void* channel) {
  input_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputChannel(void* channel) {
  output_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
451 452 453
}

template <typename T>
J
jiaqi 已提交
454 455
void InMemoryDataFeed<T>::SetConsumeChannel(void* channel) {
  consume_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
456 457
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
template <typename T>
void InMemoryDataFeed<T>::SetInputPvChannel(void* channel) {
  input_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputPvChannel(void* channel) {
  output_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetConsumePvChannel(void* channel) {
  consume_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

476 477 478 479 480 481 482 483 484 485
template <typename T>
void InMemoryDataFeed<T>::SetThreadId(int thread_id) {
  thread_id_ = thread_id;
}

template <typename T>
void InMemoryDataFeed<T>::SetThreadNum(int thread_num) {
  thread_num_ = thread_num;
}

486 487 488 489 490
template <typename T>
void InMemoryDataFeed<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
template <typename T>
void InMemoryDataFeed<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

template <typename T>
void InMemoryDataFeed<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

template <typename T>
void InMemoryDataFeed<T>::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

506 507 508 509 510
template <typename T>
void InMemoryDataFeed<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

511 512 513 514 515
template <typename T>
void InMemoryDataFeed<T>::SetParseUid(bool parse_uid) {
  parse_uid_ = parse_uid;
}

516 517
template <typename T>
void InMemoryDataFeed<T>::LoadIntoMemory() {
D
dongdaxiang 已提交
518
#ifdef _LINUX
T
Thunderbrook 已提交
519 520 521 522
  if (!so_parser_name_.empty()) {
    LoadIntoMemoryFromSo();
    return;
  }
X
xujiaqi01 已提交
523
  VLOG(3) << "LoadIntoMemory() begin, thread_id=" << thread_id_;
524
  std::string filename;
J
jiaqi 已提交
525
  while (this->PickOneFile(&filename)) {
X
xujiaqi01 已提交
526 527
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
H
hutuxian 已提交
528 529 530 531 532 533 534 535 536 537 538
#ifdef PADDLE_WITH_BOX_PS
    if (BoxWrapper::GetInstance()->UseAfsApi()) {
      this->fp_ = BoxWrapper::GetInstance()->afs_manager->GetFile(
          filename, this->pipe_command_);
    } else {
#endif
      int err_no = 0;
      this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);
#ifdef PADDLE_WITH_BOX_PS
    }
#endif
J
jiaqi 已提交
539 540 541
    CHECK(this->fp_ != nullptr);
    __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);
    paddle::framework::ChannelWriter<T> writer(input_channel_);
542
    T instance;
543 544
    platform::Timer timeline;
    timeline.Start();
D
dongdaxiang 已提交
545
    while (ParseOneInstanceFromPipe(&instance)) {
J
jiaqi 已提交
546 547
      writer << std::move(instance);
      instance = T();
548
    }
H
hutuxian 已提交
549 550 551 552 553 554
    STAT_ADD(STAT_total_feasign_num_in_mem, fea_num_);
    {
      std::lock_guard<std::mutex> flock(*mutex_for_fea_num_);
      *total_fea_num_ += fea_num_;
      fea_num_ = 0;
    }
J
jiaqi 已提交
555
    writer.Flush();
556
    timeline.Pause();
557 558
    VLOG(3) << "LoadIntoMemory() read all lines, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
559
            << " seconds, thread_id=" << thread_id_;
560
  }
X
xujiaqi01 已提交
561
  VLOG(3) << "LoadIntoMemory() end, thread_id=" << thread_id_;
D
dongdaxiang 已提交
562
#endif
563 564
}

T
Thunderbrook 已提交
565 566
template <typename T>
void InMemoryDataFeed<T>::LoadIntoMemoryFromSo() {
T
Thunderbrook 已提交
567 568
#if (defined _LINUX) && (defined PADDLE_WITH_HETERPS) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
569
  VLOG(3) << "LoadIntoMemoryFromSo() begin, thread_id=" << thread_id_;
T
Thunderbrook 已提交
570 571 572
  int buf_len = 1024 * 1024 * 10;
  char* buf = (char*)malloc(buf_len + 10);
  auto ps_gpu_ptr = PSGPUWrapper::GetInstance();
T
Thunderbrook 已提交
573 574 575 576 577 578 579 580 581 582

  paddle::framework::CustomParser* parser =
      global_dlmanager_pool().Load(so_parser_name_, slot_conf_);

  std::string filename;
  while (this->PickOneFile(&filename)) {
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
    platform::Timer timeline;
    timeline.Start();
T
Thunderbrook 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
    if (ps_gpu_ptr->UseAfsApi()) {
      auto afs_reader = ps_gpu_ptr->OpenReader(filename);
      int read_len = 0;
      char* cursor = buf;
      int remain = 0;
      while ((read_len = afs_reader->read(cursor, buf_len - remain)) > 0) {
        std::vector<T> instances;
        read_len += remain;
        remain = ParseInstanceFromSo(read_len, buf, &instances, parser);
        input_channel_->Write(std::move(instances));
        instances = std::vector<T>();
        if (remain) {
          memmove(buf, buf + read_len - remain, remain);
        }
        cursor = buf + remain;
T
Thunderbrook 已提交
598
      }
T
Thunderbrook 已提交
599 600
    } else {
      VLOG(0) << "Should Call InitAfsApi First";
T
Thunderbrook 已提交
601 602 603 604 605 606 607
    }

    timeline.Pause();
    VLOG(3) << "LoadIntoMemoryFromSo() read all lines, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
            << " seconds, thread_id=" << thread_id_;
  }
T
Thunderbrook 已提交
608
  free(buf);
T
Thunderbrook 已提交
609 610 611 612
  VLOG(3) << "LoadIntoMemoryFromSo() end, thread_id=" << thread_id_;
#endif
}

613
// explicit instantiation
J
jiaqi 已提交
614
template class InMemoryDataFeed<Record>;
615

W
Wang Guibao 已提交
616 617 618 619 620 621
void MultiSlotDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

622 623 624 625
  PADDLE_ENFORCE_EQ(
      data_feed_desc.has_multi_slot_desc(), true,
      platform::errors::PreconditionNotMet(
          "Multi_slot_desc has not been set in MultiSlotDataFeed."));
W
Wang Guibao 已提交
626 627 628
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
J
jiaqi 已提交
629 630
  // temporarily set queue size = batch size * 100
  SetQueueSize(data_feed_desc.batch_size() * 100);
W
Wang Guibao 已提交
631 632 633 634
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
635 636
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
W
Wang Guibao 已提交
637 638 639 640 641 642 643
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
644 645
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
W
Wang Guibao 已提交
646 647 648
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
649 650
      std::vector<int> local_shape;
      if (slot.is_dense()) {
651
        for (int j = 0; j < slot.shape_size(); ++j) {
652 653
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
654
          }
655 656
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
657
          }
658 659
        }
      }
660
      for (int j = 0; j < slot.shape_size(); ++j) {
661
        local_shape.push_back(slot.shape(j));
662 663
      }
      use_slots_shape_.push_back(local_shape);
W
Wang Guibao 已提交
664 665 666
    }
  }
  feed_vec_.resize(use_slots_.size());
667
  pipe_command_ = data_feed_desc.pipe_command();
W
Wang Guibao 已提交
668 669 670
  finish_init_ = true;
}

D
dongdaxiang 已提交
671
void MultiSlotDataFeed::ReadThread() {
672
#ifdef _LINUX
673
  VLOG(4) << "entering MultiSlotDataFeed::ReadThread()";
674 675 676 677
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
D
dongdaxiang 已提交
678
    CHECK(fp_ != nullptr);
679 680 681 682 683
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    std::vector<MultiSlotType> instance;
    int ins_num = 0;
    while (ParseOneInstanceFromPipe(&instance)) {
      ins_num++;
684
      queue_->Put(instance);
685
    }
D
dongdaxiang 已提交
686
    VLOG(3) << "filename: " << filename << " inst num: " << ins_num;
D
dongdaxiang 已提交
687
  }
688
  queue_->Close();
689
#endif
D
dongdaxiang 已提交
690 691
}

W
Wang Guibao 已提交
692
bool MultiSlotDataFeed::CheckFile(const char* filename) {
693
#ifdef _LINUX
W
Wang Guibao 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
  CheckInit();  // get info of slots
  std::ifstream fin(filename);
  if (!fin.good()) {
    VLOG(1) << "error: open file<" << filename << "> fail";
    return false;
  }
  std::string line;
  int instance_cout = 0;
  std::string all_slots_alias = "";
  for (const auto& alias : all_slots_) {
    all_slots_alias += alias + " ";
  }
  std::string use_slots_alias = "";
  for (const auto& alias : use_slots_) {
    use_slots_alias += alias + " ";
  }
  VLOG(3) << "total slots num: " << all_slots_.size();
  VLOG(3) << "total slots alias: " << all_slots_alias;
  VLOG(3) << "used slots num: " << use_slots_.size();
  VLOG(3) << "used slots alias: " << use_slots_alias;
  while (getline(fin, line)) {
    ++instance_cout;
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int len = line.length();
    for (size_t i = 0; i < all_slots_.size(); ++i) {
X
xjqbest 已提交
720
      auto num = strtol(endptr, &endptr, 10);
W
Wang Guibao 已提交
721
      if (num < 0) {
722 723
        VLOG(0) << "error: the number of ids is a negative number: " << num;
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
724
                << filename << ">";
725
        VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
726
                << " th slot with total slots number: " << all_slots_.size();
W
Wang Guibao 已提交
727 728
        return false;
      } else if (num == 0) {
729
        VLOG(0)
W
Wang Guibao 已提交
730 731 732 733
            << "error: the number of ids can not be zero, you need "
               "padding it in data generator; or if there is something wrong"
               " with the data, please check if the data contains unresolvable "
               "characters.";
734
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
735
                << filename << ">";
736
        VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
737
                << " th slot with total slots number: " << all_slots_.size();
W
Wang Guibao 已提交
738
        return false;
X
xjqbest 已提交
739
      } else if (errno == ERANGE || num > INT_MAX) {
740 741
        VLOG(0) << "error: the number of ids greater than INT_MAX";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
742
                << filename << ">";
743
        VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
744
                << " th slot with total slots number: " << all_slots_.size();
W
Wang Guibao 已提交
745 746 747
        return false;
      }
      if (all_slots_type_[i] == "float") {
Y
yaoxuefeng 已提交
748
        for (int j = 0; j < num; ++j) {
W
Wang Guibao 已提交
749 750
          strtof(endptr, &endptr);
          if (errno == ERANGE) {
751
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
752
                       "representable values for float";
753
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
754
                    << filename << ">";
755
            VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
756 757 758 759
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
W
Wang Guibao 已提交
760 761
            return false;
          }
Y
yaoxuefeng 已提交
762
          if (j + 1 != num && endptr - str == len) {
763
            VLOG(0) << "error: there is a wrong with the number of ids.";
764
            VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
765 766 767 768
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
769
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
770 771 772 773 774
                    << filename << ">";
            return false;
          }
        }
      } else if (all_slots_type_[i] == "uint64") {
Y
yaoxuefeng 已提交
775
        for (int j = 0; j < num; ++j) {
W
Wang Guibao 已提交
776 777
          strtoull(endptr, &endptr, 10);
          if (errno == ERANGE) {
778
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
779
                       "representable values for uint64_t";
780
            VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
781 782 783 784
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
785
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
786 787 788
                    << filename << ">";
            return false;
          }
Y
yaoxuefeng 已提交
789
          if (j + 1 != num && endptr - str == len) {
790
            VLOG(0) << "error: there is a wrong with the number of ids.";
791
            VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
792 793 794 795
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
796
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
797 798 799 800 801
                    << filename << ">";
            return false;
          }
        }
      } else {
802
        VLOG(0) << "error: this type<" << all_slots_type_[i]
W
Wang Guibao 已提交
803 804 805 806
                << "> is not supported";
        return false;
      }
    }
807 808 809
    // It may be added '\t' character to the end of the output of reduce
    // task when processes data by Hadoop(when the output of the reduce
    // task of Hadoop has only one field, it will add a '\t' at the end
810 811 812 813 814
    // of the line by default, and you can use this option to avoid it:
    // `-D mapred.textoutputformat.ignoreseparator=true`), which does
    // not affect the correctness of the data. Therefore, it should be
    // judged that the data is not normal when the end of each line of
    // data contains characters which are not spaces.
815 816 817 818 819 820 821 822
    while (endptr - str != len) {
      if (!isspace(*(endptr++))) {
        VLOG(0)
            << "error: there is some extra characters at the end of the line.";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
                << filename << ">";
        return false;
      }
W
Wang Guibao 已提交
823 824 825 826
    }
  }
  VLOG(3) << "instances cout: " << instance_cout;
  VLOG(3) << "The file format is correct";
827
#endif
W
Wang Guibao 已提交
828 829 830
  return true;
}

D
dongdaxiang 已提交
831 832
bool MultiSlotDataFeed::ParseOneInstanceFromPipe(
    std::vector<MultiSlotType>* instance) {
833
#ifdef _LINUX
834 835 836
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
D
dongdaxiang 已提交
837 838
    return false;
  } else {
839 840
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);
D
dongdaxiang 已提交
841 842
    const char* str = reader.get();
    std::string line = std::string(str);
T
tangwei12 已提交
843

D
dongdaxiang 已提交
844 845 846 847 848
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
T
tangwei12 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

      if (num <= 0) {
        std::stringstream ss;
        ss << "\n\nGot unexpected input, maybe something wrong with it.\n";
        ss << "\n----------------------\n";
        ss << "The Origin Input Data:\n";
        ss << "----------------------\n";

        ss << line << "\n";

        ss << "\n----------------------\n";
        ss << "Some Possible Errors:\n";
        ss << "----------------------\n";
        ss << "1. The number of ids can not be zero, you need padding.\n";
        ss << "2. The input data contains unresolvable characters.\n";
        ss << "3. We detect the slot " << i << "'s feasign number is " << num
           << " which is illegal.\n";
        ss << "\n";

        PADDLE_THROW(platform::errors::InvalidArgument(ss.str()));
      }

D
dongdaxiang 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
D
dongdaxiang 已提交
887 888 889 890
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
D
dongdaxiang 已提交
891 892 893 894 895
        }
      }
    }
    return true;
  }
896 897 898
#else
  return true;
#endif
D
dongdaxiang 已提交
899 900
}

W
Wang Guibao 已提交
901
bool MultiSlotDataFeed::ParseOneInstance(std::vector<MultiSlotType>* instance) {
X
xjqbest 已提交
902
#ifdef _LINUX
W
Wang Guibao 已提交
903 904 905 906 907 908 909 910 911 912 913
  std::string line;
  if (getline(file_, line)) {
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
914 915 916 917 918 919
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
Y
yaoxuefeng 已提交
920 921 922
              "characters.\nplease check this error line: %s, \n Specifically, "
              "something wrong happened(the length of this slot's feasign is 0)"
              "when we parse the %d th slots."
Y
yaoxuefeng 已提交
923
              "Maybe something wrong around this slot"
Y
yaoxuefeng 已提交
924 925 926
              "\nWe detect the feasign number of this slot is %d, "
              "which is illegal.",
              str, i, num));
927

W
Wang Guibao 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
  } else {
    return false;
  }
X
xjqbest 已提交
951 952
#endif
  return false;
W
Wang Guibao 已提交
953 954 955 956 957
}

void MultiSlotDataFeed::AddInstanceToInsVec(
    std::vector<MultiSlotType>* ins_vec,
    const std::vector<MultiSlotType>& instance, int index) {
X
xjqbest 已提交
958
#ifdef _LINUX
W
Wang Guibao 已提交
959 960 961 962 963 964 965
  if (index == 0) {
    ins_vec->resize(instance.size());
    for (size_t i = 0; i < instance.size(); ++i) {
      (*ins_vec)[i].Init(instance[i].GetType());
      (*ins_vec)[i].InitOffset();
    }
  }
966

W
Wang Guibao 已提交
967 968 969
  for (size_t i = 0; i < instance.size(); ++i) {
    (*ins_vec)[i].AddIns(instance[i]);
  }
X
xjqbest 已提交
970
#endif
W
Wang Guibao 已提交
971 972 973 974
}

void MultiSlotDataFeed::PutToFeedVec(
    const std::vector<MultiSlotType>& ins_vec) {
X
xjqbest 已提交
975
#ifdef _LINUX
W
Wang Guibao 已提交
976
  for (size_t i = 0; i < use_slots_.size(); ++i) {
977 978 979
    if (feed_vec_[i] == nullptr) {
      continue;
    }
980
    VLOG(4) << "MultiSlotDataFeed::PutToFeedVec i: " << i;
W
Wang Guibao 已提交
981 982 983
    const auto& type = ins_vec[i].GetType();
    const auto& offset = ins_vec[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());
984 985 986
    VLOG(4) << "total_instance: " << total_instance;
    // platform::CPUPlace()
    VLOG(4) << "this->place_: " << this->place_;
W
Wang Guibao 已提交
987 988
    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec[i].GetFloatData();
989 990 991
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
W
Wang Guibao 已提交
992 993 994
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec[i].GetUint64Data();
995
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
996 997 998
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
999
    }
1000

W
wangguanqun 已提交
1001 1002 1003 1004
    if (!use_slots_is_dense_[i]) {
      LoD data_lod{offset};
      feed_vec_[i]->set_lod(data_lod);
    }
1005
    if (use_slots_is_dense_[i]) {
1006 1007 1008 1009
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1010
      feed_vec_[i]->Resize(phi::make_ddim(use_slots_shape_[i]));
W
Wang Guibao 已提交
1011 1012
    }
  }
X
xjqbest 已提交
1013
#endif
W
Wang Guibao 已提交
1014 1015
}

1016 1017 1018 1019 1020 1021
void MultiSlotInMemoryDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

1022 1023 1024 1025
  PADDLE_ENFORCE_EQ(
      data_feed_desc.has_multi_slot_desc(), true,
      platform::errors::PreconditionNotMet(
          "Multi_slot_desc has not been set in MultiSlotInMemoryDataFeed."));
1026 1027 1028 1029 1030 1031 1032
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
1033 1034
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
1035 1036
  use_slots_.clear();
  use_slots_is_dense_.clear();
T
Thunderbrook 已提交
1037
  slot_conf_.resize(all_slot_num);
1038 1039 1040 1041 1042
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
T
Thunderbrook 已提交
1043 1044 1045 1046 1047

    slot_conf_[i].name = slot.name();
    slot_conf_[i].type = slot.type();
    slot_conf_[i].use_slots_index = use_slots_index_[i];

1048 1049
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
1050 1051 1052
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
T
Thunderbrook 已提交
1053
      slot_conf_[i].use_slots_is_dense = slot.is_dense();
1054 1055
      std::vector<int> local_shape;
      if (slot.is_dense()) {
1056
        for (int j = 0; j < slot.shape_size(); ++j) {
1057 1058
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
1059
          }
1060 1061
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
1062
          }
1063 1064
        }
      }
1065
      for (int j = 0; j < slot.shape_size(); ++j) {
1066
        local_shape.push_back(slot.shape(j));
1067 1068
      }
      use_slots_shape_.push_back(local_shape);
1069 1070
    }
  }
1071
  uid_slot_ = multi_slot_desc.uid_slot();
1072
  feed_vec_.resize(use_slots_.size());
H
hutuxian 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
  const int kEstimatedFeasignNumPerSlot = 5;  // Magic Number
  for (size_t i = 0; i < all_slot_num; i++) {
    batch_float_feasigns_.push_back(std::vector<float>());
    batch_uint64_feasigns_.push_back(std::vector<uint64_t>());
    batch_float_feasigns_[i].reserve(default_batch_size_ *
                                     kEstimatedFeasignNumPerSlot);
    batch_uint64_feasigns_[i].reserve(default_batch_size_ *
                                      kEstimatedFeasignNumPerSlot);
    offset_.push_back(std::vector<size_t>());
    offset_[i].reserve(default_batch_size_ +
                       1);  // Each lod info will prepend a zero
  }
  visit_.resize(all_slot_num, false);
1086
  pipe_command_ = data_feed_desc.pipe_command();
T
Thunderbrook 已提交
1087
  so_parser_name_ = data_feed_desc.so_parser_name();
1088
  finish_init_ = true;
1089
  input_type_ = data_feed_desc.input_type();
1090 1091
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
void MultiSlotInMemoryDataFeed::GetMsgFromLogKey(const std::string& log_key,
                                                 uint64_t* search_id,
                                                 uint32_t* cmatch,
                                                 uint32_t* rank) {
  std::string searchid_str = log_key.substr(16, 16);
  *search_id = (uint64_t)strtoull(searchid_str.c_str(), NULL, 16);

  std::string cmatch_str = log_key.substr(11, 3);
  *cmatch = (uint32_t)strtoul(cmatch_str.c_str(), NULL, 16);

  std::string rank_str = log_key.substr(14, 2);
  *rank = (uint32_t)strtoul(rank_str.c_str(), NULL, 16);
}

T
Thunderbrook 已提交
1106 1107 1108 1109 1110
int MultiSlotInMemoryDataFeed::ParseInstanceFromSo(
    int len, const char* str, std::vector<Record>* instances,
    CustomParser* parser) {
  // VLOG(0) << "parser: " << parser;
  return parser->ParseInstance(len, str, instances);
T
Thunderbrook 已提交
1111 1112
}

J
jiaqi 已提交
1113
bool MultiSlotInMemoryDataFeed::ParseOneInstanceFromPipe(Record* instance) {
X
xjqbest 已提交
1114
#ifdef _LINUX
1115 1116 1117 1118 1119 1120 1121
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
    return false;
  } else {
    const char* str = reader.get();
    std::string line = std::string(str);
1122
    // VLOG(3) << line;
1123 1124
    char* endptr = const_cast<char*>(str);
    int pos = 0;
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    if (parse_ins_id_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->ins_id_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "ins_id " << instance->ins_id_;
    }
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    if (parse_content_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->content_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "content " << instance->content_;
    }
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
    if (parse_logkey_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      // parse_logkey
      std::string log_key = std::string(str + pos, len);
      uint64_t search_id;
      uint32_t cmatch;
      uint32_t rank;
      GetMsgFromLogKey(log_key, &search_id, &cmatch, &rank);

H
hutuxian 已提交
1164
      instance->ins_id_ = log_key;
1165 1166 1167 1168 1169
      instance->search_id = search_id;
      instance->cmatch = cmatch;
      instance->rank = rank;
      pos += len + 1;
    }
1170 1171 1172
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
1173 1174 1175 1176 1177 1178
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
Y
yaoxuefeng 已提交
1179 1180 1181
              "characters.\nplease check this error line: %s, \n Specifically, "
              "something wrong happened(the length of this slot's feasign is 0)"
              "when we parse the %d th slots."
Y
yaoxuefeng 已提交
1182
              "Maybe something wrong around this slot"
Y
yaoxuefeng 已提交
1183 1184 1185
              "\nWe detect the feasign number of this slot is %d, "
              "which is illegal.",
              str, i, num));
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
#ifdef PADDLE_WITH_PSLIB
      if (parse_uid_ && all_slots_[i] == uid_slot_) {
        PADDLE_ENFORCE(num == 1 && all_slots_type_[i][0] == 'u',
                       platform::errors::PreconditionNotMet(
                           "The uid has to be uint64 and single.\n"
                           "please check this error line: %s",
                           str));

        char* uidptr = endptr;
        uint64_t feasign = (uint64_t)strtoull(uidptr, &uidptr, 10);
        instance->uid_ = feasign;
      }
#endif
1199
      if (idx != -1) {
J
jiaqi 已提交
1200
        if (all_slots_type_[i][0] == 'f') {  // float
1201 1202
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
1203
            // if float feasign is equal to zero, ignore it
1204 1205
            // except when slot is dense
            if (fabs(feasign) < 1e-6 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
1206 1207
              continue;
            }
T
Thunderbrook 已提交
1208
            FeatureFeasign f;
J
jiaqi 已提交
1209 1210
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
1211
          }
J
jiaqi 已提交
1212
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
1213 1214
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
1215
            // if uint64 feasign is equal to zero, ignore it
1216 1217
            // except when slot is dense
            if (feasign == 0 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
1218 1219
              continue;
            }
T
Thunderbrook 已提交
1220
            FeatureFeasign f;
J
jiaqi 已提交
1221 1222
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
        }
      }
    }
J
jiaqi 已提交
1235 1236
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
H
hutuxian 已提交
1237
    fea_num_ += instance->uint64_feasigns_.size();
1238 1239
    return true;
  }
X
xjqbest 已提交
1240 1241 1242
#else
  return false;
#endif
1243 1244
}

J
jiaqi 已提交
1245
bool MultiSlotInMemoryDataFeed::ParseOneInstance(Record* instance) {
X
xjqbest 已提交
1246
#ifdef _LINUX
1247 1248
  std::string line;
  if (getline(file_, line)) {
1249
    VLOG(3) << line;
1250 1251 1252 1253 1254 1255 1256
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
1257 1258 1259 1260 1261 1262
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
Y
yaoxuefeng 已提交
1263 1264 1265
              "characters.\nplease check this error line: %s, \n Specifically, "
              "something wrong happened(the length of this slot's feasign is 0)"
              "when we parse the %d th slots."
Y
yaoxuefeng 已提交
1266
              "Maybe something wrong around this slot"
Y
yaoxuefeng 已提交
1267 1268 1269
              "\nWe detect the feasign number of this slot is %d, "
              "which is illegal.",
              str, i, num));
1270 1271

      if (idx != -1) {
J
jiaqi 已提交
1272
        if (all_slots_type_[i][0] == 'f') {  // float
1273 1274
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
1275 1276 1277
            if (fabs(feasign) < 1e-6) {
              continue;
            }
T
Thunderbrook 已提交
1278
            FeatureFeasign f;
J
jiaqi 已提交
1279 1280
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
1281
          }
J
jiaqi 已提交
1282
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
1283 1284
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
1285 1286 1287
            if (feasign == 0) {
              continue;
            }
T
Thunderbrook 已提交
1288
            FeatureFeasign f;
J
jiaqi 已提交
1289 1290
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
1291 1292 1293 1294 1295 1296 1297 1298 1299
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
J
jiaqi 已提交
1300 1301 1302
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
    return true;
1303 1304 1305
  } else {
    return false;
  }
X
xjqbest 已提交
1306 1307
#endif
  return false;
1308 1309
}

Y
yaoxuefeng 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
void MultiSlotInMemoryDataFeed::PutToFeedVec(const Record* ins_vec, int num) {
#ifdef _LINUX
  for (size_t i = 0; i < batch_float_feasigns_.size(); ++i) {
    batch_float_feasigns_[i].clear();
    batch_uint64_feasigns_[i].clear();
    offset_[i].clear();
    offset_[i].push_back(0);
  }
  ins_content_vec_.clear();
  ins_content_vec_.reserve(num);
  ins_id_vec_.clear();
  ins_id_vec_.reserve(num);
  for (int i = 0; i < num; ++i) {
    auto& r = ins_vec[i];
    ins_id_vec_.push_back(r.ins_id_);
    ins_content_vec_.push_back(r.content_);
    for (auto& item : r.float_feasigns_) {
      batch_float_feasigns_[item.slot()].push_back(item.sign().float_feasign_);
      visit_[item.slot()] = true;
    }
    for (auto& item : r.uint64_feasigns_) {
      batch_uint64_feasigns_[item.slot()].push_back(
          item.sign().uint64_feasign_);
      visit_[item.slot()] = true;
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
      if (visit_[j]) {
        visit_[j] = false;
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
          batch_float_feasigns_[j].push_back(0.0);
        } else if (type[0] == 'u') {  // uint64
          batch_uint64_feasigns_[j].push_back(0);
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
        offset_[j].push_back(batch_float_feasigns_[j].size());
      } else if (type[0] == 'u') {  // uint64
        offset_[j].push_back(batch_uint64_feasigns_[j].size());
      }
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (feed_vec_[i] == nullptr) {
      continue;
    }
    int total_instance = offset_[i].back();
    const auto& type = all_slots_type_[i];
    if (type[0] == 'f') {  // float
      float* feasign = batch_float_feasigns_[i].data();
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      uint64_t* feasign = batch_uint64_feasigns_[i].data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
    }
    auto& slot_offset = offset_[i];
    if (this->input_type_ == 0) {
      LoD data_lod{slot_offset};
      feed_vec_[i]->set_lod(data_lod);
    } else if (this->input_type_ == 1) {
      if (!use_slots_is_dense_[i]) {
        std::vector<size_t> tmp_offset;
        PADDLE_ENFORCE_EQ(slot_offset.size(), 2,
                          platform::errors::InvalidArgument(
                              "In batch reader, the sparse tensor lod size "
                              "must be 2, but received %d.",
                              slot_offset.size()));
        const auto& max_size = slot_offset[1];
        tmp_offset.reserve(max_size + 1);
        for (unsigned int k = 0; k <= max_size; k++) {
          tmp_offset.emplace_back(k);
        }
        slot_offset = tmp_offset;
        LoD data_lod{slot_offset};
        feed_vec_[i]->set_lod(data_lod);
      }
    }
    if (use_slots_is_dense_[i]) {
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1401
      feed_vec_[i]->Resize(phi::make_ddim(use_slots_shape_[i]));
Y
yaoxuefeng 已提交
1402 1403 1404 1405 1406
    }
  }
#endif
}

J
jiaqi 已提交
1407 1408
void MultiSlotInMemoryDataFeed::PutToFeedVec(
    const std::vector<Record>& ins_vec) {
X
xjqbest 已提交
1409
#ifdef _LINUX
H
hutuxian 已提交
1410 1411 1412 1413 1414 1415
  for (size_t i = 0; i < batch_float_feasigns_.size(); ++i) {
    batch_float_feasigns_[i].clear();
    batch_uint64_feasigns_[i].clear();
    offset_[i].clear();
    offset_[i].push_back(0);
  }
1416 1417 1418 1419
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
J
jiaqi 已提交
1420 1421
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto& r = ins_vec[i];
1422 1423
    ins_id_vec_.push_back(r.ins_id_);
    ins_content_vec_.push_back(r.content_);
J
jiaqi 已提交
1424
    for (auto& item : r.float_feasigns_) {
H
hutuxian 已提交
1425 1426
      batch_float_feasigns_[item.slot()].push_back(item.sign().float_feasign_);
      visit_[item.slot()] = true;
J
jiaqi 已提交
1427 1428
    }
    for (auto& item : r.uint64_feasigns_) {
H
hutuxian 已提交
1429 1430 1431
      batch_uint64_feasigns_[item.slot()].push_back(
          item.sign().uint64_feasign_);
      visit_[item.slot()] = true;
J
jiaqi 已提交
1432 1433 1434
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
H
hutuxian 已提交
1435 1436
      if (visit_[j]) {
        visit_[j] = false;
J
jiaqi 已提交
1437 1438 1439
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
H
hutuxian 已提交
1440
          batch_float_feasigns_[j].push_back(0.0);
J
jiaqi 已提交
1441
        } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1442
          batch_uint64_feasigns_[j].push_back(0);
J
jiaqi 已提交
1443 1444 1445 1446
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
H
hutuxian 已提交
1447
        offset_[j].push_back(batch_float_feasigns_[j].size());
J
jiaqi 已提交
1448
      } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1449
        offset_[j].push_back(batch_uint64_feasigns_[j].size());
J
jiaqi 已提交
1450
      }
1451 1452 1453 1454
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
1455 1456 1457
    if (feed_vec_[i] == nullptr) {
      continue;
    }
H
hutuxian 已提交
1458
    int total_instance = offset_[i].back();
J
jiaqi 已提交
1459
    const auto& type = all_slots_type_[i];
1460
    if (type[0] == 'f') {  // float
H
hutuxian 已提交
1461
      float* feasign = batch_float_feasigns_[i].data();
1462 1463 1464
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
1465 1466
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
H
hutuxian 已提交
1467
      uint64_t* feasign = batch_uint64_feasigns_[i].data();
1468
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1469 1470
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
1471
    }
H
hutuxian 已提交
1472
    auto& slot_offset = offset_[i];
1473
    if (this->input_type_ == 0) {
W
wangguanqun 已提交
1474 1475 1476 1477
      if (!use_slots_is_dense_[i]) {
        LoD data_lod{slot_offset};
        feed_vec_[i]->set_lod(data_lod);
      }
1478 1479 1480 1481 1482 1483
    } else if (this->input_type_ == 1) {
      if (!use_slots_is_dense_[i]) {
        std::vector<size_t> tmp_offset;
        PADDLE_ENFORCE_EQ(slot_offset.size(), 2,
                          platform::errors::InvalidArgument(
                              "In batch reader, the sparse tensor lod size "
1484
                              "must be 2, but received %d.",
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
                              slot_offset.size()));
        const auto& max_size = slot_offset[1];
        tmp_offset.reserve(max_size + 1);
        for (unsigned int k = 0; k <= max_size; k++) {
          tmp_offset.emplace_back(k);
        }
        slot_offset = tmp_offset;
        LoD data_lod{slot_offset};
        feed_vec_[i]->set_lod(data_lod);
      }
    }
1496
    if (use_slots_is_dense_[i]) {
1497 1498 1499 1500
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1501
      feed_vec_[i]->Resize(phi::make_ddim(use_slots_shape_[i]));
1502 1503
    }
  }
X
xjqbest 已提交
1504
#endif
1505 1506
}

1507
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && !defined(_WIN32)
H
hutuxian 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516
template <typename T>
void PrivateInstantDataFeed<T>::PutToFeedVec() {
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    const auto& type = ins_vec_[i].GetType();
    const auto& offset = ins_vec_[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());

    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec_[i].GetFloatData();
1517 1518 1519
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
H
hutuxian 已提交
1520 1521 1522 1523
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec_[i].GetUint64Data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1524 1525 1526
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
H
hutuxian 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535
    }

    LoD data_lod{offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      int64_t total_dims = 1;
      for (const auto e : use_slots_shape_[i]) {
        total_dims *= e;
      }
1536 1537 1538 1539 1540 1541 1542
      PADDLE_ENFORCE_EQ(
          total_dims, total_instance,
          platform::errors::InvalidArgument(
              "The actual data size of slot[%s] doesn't match its declaration. "
              "The actual data size of slot is %lld"
              ", and its declaration is %lld.",
              use_slots_[i].c_str(), total_dims, total_instance));
1543
      feed_vec_[i]->Resize(phi::make_ddim(use_slots_shape_[i]));
H
hutuxian 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
    }
  }
}

template <typename T>
int PrivateInstantDataFeed<T>::Next() {
  if (ParseOneMiniBatch()) {
    PutToFeedVec();
    return ins_vec_[0].GetBatchSize();
  }
  Postprocess();

  std::string filename;
  if (!PickOneFile(&filename)) {
    return -1;
  }
  if (!Preprocess(filename)) {
    return -1;
  }

1564 1565 1566
  PADDLE_ENFORCE_EQ(
      true, ParseOneMiniBatch(),
      platform::errors::InvalidArgument("Fail to parse mini-batch data."));
H
hutuxian 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
  PutToFeedVec();
  return ins_vec_[0].GetBatchSize();
}

template <typename T>
void PrivateInstantDataFeed<T>::Init(const DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

1577 1578 1579 1580
  PADDLE_ENFORCE_EQ(
      data_feed_desc.has_multi_slot_desc(), true,
      platform::errors::PreconditionNotMet(
          "Multi_slot_desc has not been set in PrivateInstantDataFeed."));
H
hutuxian 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
  multi_inductive_shape_index_.resize(all_slot_num);
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
      std::vector<int> local_shape;
      if (slot.is_dense()) {
1601
        for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1602 1603 1604 1605 1606
          if (slot.shape(j) == -1) {
            multi_inductive_shape_index_[i].push_back(j);
          }
        }
      }
1607
      for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
        local_shape.push_back(slot.shape(j));
      }
      use_slots_shape_.push_back(local_shape);
    }
  }
  feed_vec_.resize(use_slots_.size());
  ins_vec_.resize(use_slots_.size());

  finish_init_ = true;
}

template class PrivateInstantDataFeed<std::vector<MultiSlotType>>;

bool MultiSlotFileInstantDataFeed::Preprocess(const std::string& filename) {
  fd_ = open(filename.c_str(), O_RDONLY);
1623
  PADDLE_ENFORCE_NE(
1624 1625 1626 1627
      fd_, -1,
      platform::errors::Unavailable(
          "Fail to open file: %s in MultiSlotFileInstantDataFeed.",
          filename.c_str()));
H
hutuxian 已提交
1628 1629 1630 1631 1632 1633 1634

  struct stat sb;
  fstat(fd_, &sb);
  end_ = static_cast<size_t>(sb.st_size);

  buffer_ =
      reinterpret_cast<char*>(mmap(NULL, end_, PROT_READ, MAP_PRIVATE, fd_, 0));
1635 1636 1637 1638 1639
  PADDLE_ENFORCE_NE(
      buffer_, MAP_FAILED,
      platform::errors::Unavailable(
          "Memory map failed when create shared memory, error number is %s.",
          strerror(errno)));
H
hutuxian 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

  offset_ = 0;
  return true;
}

bool MultiSlotFileInstantDataFeed::Postprocess() {
  if (buffer_ != nullptr) {
    munmap(buffer_, end_);
    buffer_ = nullptr;
  }
  if (fd_ != -1) {
    close(fd_);
    fd_ = -1;
    end_ = 0;
    offset_ = 0;
  }
  return true;
}

bool MultiSlotFileInstantDataFeed::ParseOneMiniBatch() {
  if (offset_ == end_) {
    return false;
  }

  batch_size_ = 0;
  while (batch_size_ < default_batch_size_ && offset_ < end_) {
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      char type = all_slots_type_[i][0];

      uint16_t num = *reinterpret_cast<uint16_t*>(buffer_ + offset_);
1671 1672 1673 1674 1675 1676 1677
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
              "characters."));
H
hutuxian 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
      offset_ += sizeof(uint16_t);

      if (idx != -1) {
        int inductive_size = multi_inductive_shape_index_[i].size();
        if (UNLIKELY(batch_size_ == 0)) {
          ins_vec_[idx].Init(all_slots_type_[i], default_batch_size_ * num);
          ins_vec_[idx].InitOffset(default_batch_size_);
          uint64_t* inductive_shape =
              reinterpret_cast<uint64_t*>(buffer_ + offset_);
          for (int inductive_id = 0; inductive_id < inductive_size;
               ++inductive_id) {
            use_slots_shape_[i][multi_inductive_shape_index_[i][inductive_id]] =
                static_cast<int>(*(inductive_shape + inductive_id));
          }
        }
        num -= inductive_size;
        offset_ += sizeof(uint64_t) * inductive_size;

        if (type == 'f') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<float*>(buffer_ + offset_), num);
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<uint64_t*>(buffer_ + offset_), num);
          offset_ += num * sizeof(uint64_t);
        }
      } else {
        if (type == 'f') {
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          offset_ += num * sizeof(uint64_t);
        }
      }
    }
    ++batch_size_;
    // OPTIMIZE: It is better to insert check codes between instances for format
    // checking
  }

  PADDLE_ENFORCE(batch_size_ == default_batch_size_ || offset_ == end_,
1719 1720 1721 1722 1723 1724
                 platform::errors::InvalidArgument(
                     "The batch size id not equal to default batch size, or "
                     "the offset is not equal to end index."
                     "The batch size is %d, default batcch size is %d, offset "
                     "is %d, end index is %d.",
                     batch_size_, default_batch_size_, offset_, end_));
H
hutuxian 已提交
1725 1726 1727 1728
  return true;
}
#endif

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
bool PaddleBoxDataFeed::Start() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckSetFileList();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : input_pv_channel to output_pv_channel
    if (output_pv_channel_->Size() == 0 && input_pv_channel_->Size() != 0) {
      std::vector<PvInstance> data;
      input_pv_channel_->Read(data);
      output_pv_channel_->Write(std::move(data));
    }
  } else {
    // input_channel to output
    if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
      std::vector<Record> data;
      input_channel_->Read(data);
      output_channel_->Write(std::move(data));
    }
  }
#endif
  this->finish_start_ = true;
  return true;
}

int PaddleBoxDataFeed::Next() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckStart();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : output_pv_channel to consume_pv_channel
    CHECK(output_pv_channel_ != nullptr);
    CHECK(consume_pv_channel_ != nullptr);
    VLOG(3) << "output_pv_channel_ size=" << output_pv_channel_->Size()
            << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
            << ", thread_id=" << thread_id_;
    int index = 0;
    PvInstance pv_instance;
    std::vector<PvInstance> pv_vec;
    pv_vec.reserve(this->pv_batch_size_);
    while (index < this->pv_batch_size_) {
      if (output_pv_channel_->Size() == 0) {
        break;
      }
      output_pv_channel_->Get(pv_instance);
      pv_vec.push_back(pv_instance);
      ++index;
      consume_pv_channel_->Put(std::move(pv_instance));
    }
    this->batch_size_ = index;
    VLOG(3) << "pv_batch_size_=" << this->batch_size_
            << ", thread_id=" << thread_id_;
    if (this->batch_size_ != 0) {
      PutToFeedVec(pv_vec);
    } else {
      VLOG(3) << "finish reading, output_pv_channel_ size="
              << output_pv_channel_->Size()
              << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
              << ", thread_id=" << thread_id_;
    }
    return this->batch_size_;
  } else {
    this->batch_size_ = MultiSlotInMemoryDataFeed::Next();
    return this->batch_size_;
  }
#else
  return 0;
#endif
}

void PaddleBoxDataFeed::Init(const DataFeedDesc& data_feed_desc) {
  MultiSlotInMemoryDataFeed::Init(data_feed_desc);
  rank_offset_name_ = data_feed_desc.rank_offset();
  pv_batch_size_ = data_feed_desc.pv_batch_size();
}

void PaddleBoxDataFeed::GetRankOffset(const std::vector<PvInstance>& pv_vec,
                                      int ins_number) {
  int index = 0;
  int max_rank = 3;  // the value is setting
  int row = ins_number;
  int col = max_rank * 2 + 1;
  int pv_num = pv_vec.size();

  std::vector<int> rank_offset_mat(row * col, -1);
  rank_offset_mat.shrink_to_fit();

  for (int i = 0; i < pv_num; i++) {
    auto pv_ins = pv_vec[i];
    int ad_num = pv_ins->ads.size();
    int index_start = index;
    for (int j = 0; j < ad_num; ++j) {
      auto ins = pv_ins->ads[j];
      int rank = -1;
      if ((ins->cmatch == 222 || ins->cmatch == 223) &&
          ins->rank <= static_cast<uint32_t>(max_rank) && ins->rank != 0) {
        rank = ins->rank;
      }

      rank_offset_mat[index * col] = rank;
      if (rank > 0) {
        for (int k = 0; k < ad_num; ++k) {
          auto cur_ins = pv_ins->ads[k];
          int fast_rank = -1;
          if ((cur_ins->cmatch == 222 || cur_ins->cmatch == 223) &&
              cur_ins->rank <= static_cast<uint32_t>(max_rank) &&
              cur_ins->rank != 0) {
            fast_rank = cur_ins->rank;
          }

          if (fast_rank > 0) {
            int m = fast_rank - 1;
            rank_offset_mat[index * col + 2 * m + 1] = cur_ins->rank;
            rank_offset_mat[index * col + 2 * m + 2] = index_start + k;
          }
        }
      }
      index += 1;
    }
  }

  int* rank_offset = rank_offset_mat.data();
  int* tensor_ptr = rank_offset_->mutable_data<int>({row, col}, this->place_);
  CopyToFeedTensor(tensor_ptr, rank_offset, row * col * sizeof(int));
}

void PaddleBoxDataFeed::AssignFeedVar(const Scope& scope) {
  MultiSlotInMemoryDataFeed::AssignFeedVar(scope);
  // set rank offset memory
  int phase = GetCurrentPhase();  // join: 1, update: 0
  if (enable_pv_merge_ && phase == 1) {
    rank_offset_ = scope.FindVar(rank_offset_name_)->GetMutable<LoDTensor>();
  }
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<PvInstance>& pv_vec) {
#ifdef _LINUX
  int ins_number = 0;
  std::vector<Record*> ins_vec;
  for (auto& pv : pv_vec) {
    ins_number += pv->ads.size();
    for (auto ins : pv->ads) {
      ins_vec.push_back(ins);
    }
  }
  GetRankOffset(pv_vec, ins_number);
  PutToFeedVec(ins_vec);
#endif
}

int PaddleBoxDataFeed::GetCurrentPhase() {
#ifdef PADDLE_WITH_BOX_PS
  auto box_ptr = paddle::framework::BoxWrapper::GetInstance();
1881 1882 1883 1884 1885
  if (box_ptr->Mode() == 1) {  // For AucRunner
    return 1;
  } else {
    return box_ptr->Phase();
  }
1886 1887 1888 1889 1890 1891 1892 1893
#else
  LOG(WARNING) << "It should be complied with BOX_PS...";
  return current_phase_;
#endif
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<Record*>& ins_vec) {
#ifdef _LINUX
H
hutuxian 已提交
1894 1895 1896 1897 1898 1899
  for (size_t i = 0; i < batch_float_feasigns_.size(); ++i) {
    batch_float_feasigns_[i].clear();
    batch_uint64_feasigns_[i].clear();
    offset_[i].clear();
    offset_[i].push_back(0);
  }
1900 1901 1902 1903 1904 1905 1906 1907 1908
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto r = ins_vec[i];
    ins_id_vec_.push_back(r->ins_id_);
    ins_content_vec_.push_back(r->content_);
    for (auto& item : r->float_feasigns_) {
H
hutuxian 已提交
1909 1910
      batch_float_feasigns_[item.slot()].push_back(item.sign().float_feasign_);
      visit_[item.slot()] = true;
1911 1912
    }
    for (auto& item : r->uint64_feasigns_) {
H
hutuxian 已提交
1913 1914 1915
      batch_uint64_feasigns_[item.slot()].push_back(
          item.sign().uint64_feasign_);
      visit_[item.slot()] = true;
1916 1917 1918
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
H
hutuxian 已提交
1919 1920
      if (visit_[j]) {
        visit_[j] = false;
1921 1922 1923
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
H
hutuxian 已提交
1924
          batch_float_feasigns_[j].push_back(0.0);
1925
        } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1926
          batch_uint64_feasigns_[j].push_back(0);
1927 1928 1929 1930
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
H
hutuxian 已提交
1931
        offset_[j].push_back(batch_float_feasigns_[j].size());
1932
      } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1933
        offset_[j].push_back(batch_uint64_feasigns_[j].size());
1934 1935 1936 1937 1938 1939 1940 1941
      }
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (feed_vec_[i] == nullptr) {
      continue;
    }
H
hutuxian 已提交
1942
    int total_instance = offset_[i].back();
1943 1944
    const auto& type = all_slots_type_[i];
    if (type[0] == 'f') {  // float
H
hutuxian 已提交
1945
      float* feasign = batch_float_feasigns_[i].data();
1946 1947 1948 1949 1950
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
H
hutuxian 已提交
1951
      uint64_t* feasign = batch_uint64_feasigns_[i].data();
1952 1953 1954 1955
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
    }
H
hutuxian 已提交
1956
    auto& slot_offset = offset_[i];
1957 1958 1959 1960 1961 1962 1963
    LoD data_lod{slot_offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1964
      feed_vec_[i]->Resize(phi::make_ddim(use_slots_shape_[i]));
1965 1966 1967 1968 1969
    }
  }
#endif
}

Y
yaoxuefeng 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
template class InMemoryDataFeed<SlotRecord>;
void SlotRecordInMemoryDataFeed::Init(const DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;
  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 platform::errors::PreconditionNotMet(
                     "Multi_slot_desc has not been set in data_feed_desc"));
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();

  all_slots_.resize(all_slot_num);
  all_slots_info_.resize(all_slot_num);
  used_slots_info_.resize(all_slot_num);
  use_slot_size_ = 0;
  use_slots_.clear();

  float_total_dims_size_ = 0;
  float_total_dims_without_inductives_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();

    AllSlotInfo& all_slot = all_slots_info_[i];
    all_slot.slot = slot.name();
    all_slot.type = slot.type();
    all_slot.used_idx = slot.is_used() ? use_slot_size_ : -1;
    all_slot.slot_value_idx = -1;

    if (slot.is_used()) {
      UsedSlotInfo& info = used_slots_info_[use_slot_size_];
      info.idx = i;
      info.slot = slot.name();
      info.type = slot.type();
      info.dense = slot.is_dense();
      info.total_dims_without_inductive = 1;
      info.inductive_shape_index = -1;

      // record float value and uint64_t value pos
      if (info.type[0] == 'u') {
        info.slot_value_idx = uint64_use_slot_size_;
        all_slot.slot_value_idx = uint64_use_slot_size_;
        ++uint64_use_slot_size_;
      } else if (info.type[0] == 'f') {
        info.slot_value_idx = float_use_slot_size_;
        all_slot.slot_value_idx = float_use_slot_size_;
        ++float_use_slot_size_;
      }

      use_slots_.push_back(slot.name());

      if (slot.is_dense()) {
        for (int j = 0; j < slot.shape_size(); ++j) {
          if (slot.shape(j) > 0) {
            info.total_dims_without_inductive *= slot.shape(j);
          }
          if (slot.shape(j) == -1) {
            info.inductive_shape_index = j;
          }
        }
      }
      if (info.type[0] == 'f') {
        float_total_dims_without_inductives_.push_back(
            info.total_dims_without_inductive);
        float_total_dims_size_ += info.total_dims_without_inductive;
      }
      info.local_shape.clear();
      for (int j = 0; j < slot.shape_size(); ++j) {
        info.local_shape.push_back(slot.shape(j));
      }
      ++use_slot_size_;
    }
  }
  used_slots_info_.resize(use_slot_size_);

  feed_vec_.resize(used_slots_info_.size());
  const int kEstimatedFeasignNumPerSlot = 5;  // Magic Number
  for (size_t i = 0; i < all_slot_num; i++) {
    batch_float_feasigns_.push_back(std::vector<float>());
    batch_uint64_feasigns_.push_back(std::vector<uint64_t>());
    batch_float_feasigns_[i].reserve(default_batch_size_ *
                                     kEstimatedFeasignNumPerSlot);
    batch_uint64_feasigns_[i].reserve(default_batch_size_ *
                                      kEstimatedFeasignNumPerSlot);
    offset_.push_back(std::vector<size_t>());
    offset_[i].reserve(default_batch_size_ +
                       1);  // Each lod info will prepend a zero
  }
  visit_.resize(all_slot_num, false);
  pipe_command_ = data_feed_desc.pipe_command();
  finish_init_ = true;
  input_type_ = data_feed_desc.input_type();
  size_t pos = pipe_command_.find(".so");
  if (pos != std::string::npos) {
    pos = pipe_command_.rfind('|');
    if (pos == std::string::npos) {
      so_parser_name_ = pipe_command_;
      pipe_command_.clear();
    } else {
      so_parser_name_ = pipe_command_.substr(pos + 1);
      pipe_command_ = pipe_command_.substr(0, pos);
    }
    so_parser_name_ = paddle::string::erase_spaces(so_parser_name_);
  } else {
    so_parser_name_.clear();
  }
}

void SlotRecordInMemoryDataFeed::LoadIntoMemory() {
  VLOG(3) << "SlotRecord LoadIntoMemory() begin, thread_id=" << thread_id_;
  if (!so_parser_name_.empty()) {
    LoadIntoMemoryByLib();
  } else {
    LoadIntoMemoryByCommand();
  }
}
void SlotRecordInMemoryDataFeed::LoadIntoMemoryByLib(void) {
  if (true) {
    // user defined file format analysis
    LoadIntoMemoryByFile();
  } else {
    LoadIntoMemoryByLine();
  }
}

void SlotRecordInMemoryDataFeed::LoadIntoMemoryByFile(void) {
T
Thunderbrook 已提交
2098 2099
#if (defined _LINUX) && (defined PADDLE_WITH_HETERPS) && \
    (defined PADDLE_WITH_PSLIB)
Y
yaoxuefeng 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
  paddle::framework::CustomParser* parser =
      global_dlmanager_pool().Load(so_parser_name_, all_slots_info_);
  CHECK(parser != nullptr);
  // get slotrecord object
  auto pull_record_func = [this](std::vector<SlotRecord>& record_vec,
                                 int max_fetch_num, int offset) {
    if (offset > 0) {
      input_channel_->WriteMove(offset, &record_vec[0]);
      if (max_fetch_num > 0) {
        SlotRecordPool().get(&record_vec[0], offset);
      } else {  // free all
        max_fetch_num = static_cast<int>(record_vec.size());
        if (max_fetch_num > offset) {
          SlotRecordPool().put(&record_vec[offset], (max_fetch_num - offset));
        }
      }
    } else if (max_fetch_num > 0) {
      SlotRecordPool().get(&record_vec, max_fetch_num);
    } else {
      SlotRecordPool().put(&record_vec);
    }
  };

  std::string filename;
  while (this->PickOneFile(&filename)) {
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
    platform::Timer timeline;
    timeline.Start();

    int lines = 0;
    bool is_ok = true;
T
Thunderbrook 已提交
2132
    auto ps_gpu_ptr = PSGPUWrapper::GetInstance();
Y
yaoxuefeng 已提交
2133
    do {
T
Thunderbrook 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
      if (ps_gpu_ptr->UseAfsApi()) {
        auto afs_reader = ps_gpu_ptr->OpenReader(filename);
        is_ok = parser->ParseFileInstance(
            [this, afs_reader](char* buf, int len) {
              return afs_reader->read(buf, len);
            },
            pull_record_func, lines);
      } else {
        int err_no = 0;
        this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);

        CHECK(this->fp_ != nullptr);
        __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);
        is_ok = parser->ParseFileInstance(
            [this](char* buf, int len) {
              return fread(buf, sizeof(char), len, this->fp_.get());
            },
            pull_record_func, lines);

        if (!is_ok) {
          LOG(WARNING) << "parser error, filename=" << filename
                       << ", lines=" << lines;
        }
Y
yaoxuefeng 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
      }
    } while (!is_ok);
    timeline.Pause();
    VLOG(3) << "LoadIntoMemoryByLib() read all file, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
            << " seconds, thread_id=" << thread_id_ << ", lines=" << lines;
  }
#endif
}

void SlotRecordInMemoryDataFeed::LoadIntoMemoryByLine(void) {
#ifdef _LINUX
  paddle::framework::CustomParser* parser =
      global_dlmanager_pool().Load(so_parser_name_, all_slots_info_);
  std::string filename;
  BufferedLineFileReader line_reader;
  line_reader.set_sample_rate(sample_rate_);
  BufferedLineFileReader::LineFunc line_func = nullptr;

  while (this->PickOneFile(&filename)) {
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
    std::vector<SlotRecord> record_vec;
    platform::Timer timeline;
    timeline.Start();
    int offset = 0;
    int old_offset = 0;

    SlotRecordPool().get(&record_vec, OBJPOOL_BLOCK_SIZE);
    // get slotrecord object function
    auto record_func = [this, &offset, &record_vec, &old_offset](
2188
                           std::vector<SlotRecord>& vec, int num) {
Y
yaoxuefeng 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
      vec.resize(num);
      if (offset + num > OBJPOOL_BLOCK_SIZE) {
        input_channel_->WriteMove(offset, &record_vec[0]);
        SlotRecordPool().get(&record_vec[0], offset);
        record_vec.resize(OBJPOOL_BLOCK_SIZE);
        offset = 0;
        old_offset = 0;
      }
      for (int i = 0; i < num; ++i) {
        auto& ins = record_vec[offset + i];
        ins->reset();
        vec[i] = ins;
      }
      offset = offset + num;
    };

    line_func = [this, &parser, &record_vec, &offset, &filename, &record_func,
                 &old_offset](const std::string& line) {
      old_offset = offset;
      if (!parser->ParseOneInstance(line, record_func)) {
        offset = old_offset;
        LOG(WARNING) << "read file:[" << filename << "] item error, line:["
                     << line << "]";
        return false;
      }
      if (offset >= OBJPOOL_BLOCK_SIZE) {
        input_channel_->Write(std::move(record_vec));
        record_vec.clear();
        SlotRecordPool().get(&record_vec, OBJPOOL_BLOCK_SIZE);
        offset = 0;
      }
      return true;
    };

    int lines = 0;

    do {
      int err_no = 0;
      this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);
      CHECK(this->fp_ != nullptr);
      __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);
      lines = line_reader.read_file(this->fp_.get(), line_func, lines);
    } while (line_reader.is_error());

    if (offset > 0) {
      input_channel_->WriteMove(offset, &record_vec[0]);
      if (offset < OBJPOOL_BLOCK_SIZE) {
        SlotRecordPool().put(&record_vec[offset],
                             (OBJPOOL_BLOCK_SIZE - offset));
      }
    } else {
      SlotRecordPool().put(&record_vec);
    }
    record_vec.clear();
    record_vec.shrink_to_fit();
    timeline.Pause();
    VLOG(3) << "LoadIntoMemoryByLib() read all lines, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
            << " seconds, thread_id=" << thread_id_ << ", lines=" << lines
            << ", sample lines=" << line_reader.get_sample_line()
            << ", filesize=" << line_reader.file_size() / 1024.0 / 1024.0
            << "MB";
  }

  VLOG(3) << "LoadIntoMemoryByLib() end, thread_id=" << thread_id_
          << ", total size: " << line_reader.file_size();
#endif
}

void SlotRecordInMemoryDataFeed::LoadIntoMemoryByCommand(void) {
#ifdef _LINUX
  std::string filename;
  BufferedLineFileReader line_reader;
  line_reader.set_sample_rate(sample_rate_);

  while (this->PickOneFile(&filename)) {
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
    int lines = 0;
    std::vector<SlotRecord> record_vec;
    platform::Timer timeline;
    timeline.Start();
    SlotRecordPool().get(&record_vec, OBJPOOL_BLOCK_SIZE);
    int offset = 0;

    do {
      int err_no = 0;
      this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);
      CHECK(this->fp_ != nullptr);
      __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);

      lines = line_reader.read_file(
          this->fp_.get(),
          [this, &record_vec, &offset, &filename](const std::string& line) {
            if (ParseOneInstance(line, &record_vec[offset])) {
              ++offset;
            } else {
              LOG(WARNING) << "read file:[" << filename
                           << "] item error, line:[" << line << "]";
              return false;
            }
            if (offset >= OBJPOOL_BLOCK_SIZE) {
              input_channel_->Write(std::move(record_vec));
              record_vec.clear();
              SlotRecordPool().get(&record_vec, OBJPOOL_BLOCK_SIZE);
              offset = 0;
            }
            return true;
          },
          lines);
    } while (line_reader.is_error());
    if (offset > 0) {
      input_channel_->WriteMove(offset, &record_vec[0]);
      if (offset < OBJPOOL_BLOCK_SIZE) {
        SlotRecordPool().put(&record_vec[offset],
                             (OBJPOOL_BLOCK_SIZE - offset));
      }
    } else {
      SlotRecordPool().put(&record_vec);
    }
    record_vec.clear();
    record_vec.shrink_to_fit();
    timeline.Pause();
    VLOG(3) << "LoadIntoMemory() read all lines, file=" << filename
            << ", lines=" << lines
            << ", sample lines=" << line_reader.get_sample_line()
            << ", cost time=" << timeline.ElapsedSec()
            << " seconds, thread_id=" << thread_id_;
  }
  VLOG(3) << "LoadIntoMemory() end, thread_id=" << thread_id_
          << ", total size: " << line_reader.file_size();
#endif
}

static void parser_log_key(const std::string& log_key, uint64_t* search_id,
                           uint32_t* cmatch, uint32_t* rank) {
  std::string searchid_str = log_key.substr(16, 16);
  *search_id = static_cast<uint64_t>(strtoull(searchid_str.c_str(), NULL, 16));
  std::string cmatch_str = log_key.substr(11, 3);
  *cmatch = static_cast<uint32_t>(strtoul(cmatch_str.c_str(), NULL, 16));
  std::string rank_str = log_key.substr(14, 2);
  *rank = static_cast<uint32_t>(strtoul(rank_str.c_str(), NULL, 16));
}

bool SlotRecordInMemoryDataFeed::ParseOneInstance(const std::string& line,
                                                  SlotRecord* ins) {
  SlotRecord& rec = (*ins);
  // parse line
  const char* str = line.c_str();
  char* endptr = const_cast<char*>(str);
  int pos = 0;

  thread_local std::vector<std::vector<float>> slot_float_feasigns;
  thread_local std::vector<std::vector<uint64_t>> slot_uint64_feasigns;
  slot_float_feasigns.resize(float_use_slot_size_);
  slot_uint64_feasigns.resize(uint64_use_slot_size_);

  if (parse_ins_id_) {
    int num = strtol(&str[pos], &endptr, 10);
    CHECK(num == 1);  // NOLINT
    pos = endptr - str + 1;
    size_t len = 0;
    while (str[pos + len] != ' ') {
      ++len;
    }
    rec->ins_id_ = std::string(str + pos, len);
    pos += len + 1;
  }
  if (parse_logkey_) {
    int num = strtol(&str[pos], &endptr, 10);
    CHECK(num == 1);  // NOLINT
    pos = endptr - str + 1;
    size_t len = 0;
    while (str[pos + len] != ' ') {
      ++len;
    }
    // parse_logkey
    std::string log_key = std::string(str + pos, len);
    uint64_t search_id;
    uint32_t cmatch;
    uint32_t rank;
    parser_log_key(log_key, &search_id, &cmatch, &rank);

    rec->ins_id_ = log_key;
    rec->search_id = search_id;
    rec->cmatch = cmatch;
    rec->rank = rank;
    pos += len + 1;
  }

  int float_total_slot_num = 0;
  int uint64_total_slot_num = 0;

  for (size_t i = 0; i < all_slots_info_.size(); ++i) {
    auto& info = all_slots_info_[i];
    int num = strtol(&str[pos], &endptr, 10);
    PADDLE_ENFORCE(num,
                   "The number of ids can not be zero, you need padding "
                   "it in data generator; or if there is something wrong with "
                   "the data, please check if the data contains unresolvable "
                   "characters.\nplease check this error line: %s",
                   str);
    if (info.used_idx != -1) {
      if (info.type[0] == 'f') {  // float
        auto& slot_fea = slot_float_feasigns[info.slot_value_idx];
        slot_fea.clear();
        for (int j = 0; j < num; ++j) {
          float feasign = strtof(endptr, &endptr);
          if (fabs(feasign) < 1e-6 && !used_slots_info_[info.used_idx].dense) {
            continue;
          }
          slot_fea.push_back(feasign);
          ++float_total_slot_num;
        }
      } else if (info.type[0] == 'u') {  // uint64
        auto& slot_fea = slot_uint64_feasigns[info.slot_value_idx];
        slot_fea.clear();
        for (int j = 0; j < num; ++j) {
          uint64_t feasign =
              static_cast<uint64_t>(strtoull(endptr, &endptr, 10));
          slot_fea.push_back(feasign);
          ++uint64_total_slot_num;
        }
      }
      pos = endptr - str;
    } else {
      for (int j = 0; j <= num; ++j) {
        // pos = line.find_first_of(' ', pos + 1);
        while (line[pos + 1] != ' ') {
          pos++;
        }
      }
    }
  }
  rec->slot_float_feasigns_.add_slot_feasigns(slot_float_feasigns,
                                              float_total_slot_num);
  rec->slot_uint64_feasigns_.add_slot_feasigns(slot_uint64_feasigns,
                                               uint64_total_slot_num);

  return (uint64_total_slot_num > 0);
}

2431 2432 2433 2434 2435 2436 2437 2438
void SlotRecordInMemoryDataFeed::AssignFeedVar(const Scope& scope) {
  CheckInit();
  for (int i = 0; i < use_slot_size_; ++i) {
    feed_vec_[i] =
        scope.FindVar(used_slots_info_[i].slot)->GetMutable<LoDTensor>();
  }
}

Y
yaoxuefeng 已提交
2439 2440
void SlotRecordInMemoryDataFeed::PutToFeedVec(const SlotRecord* ins_vec,
                                              int num) {
2441 2442 2443 2444 2445
#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
  paddle::platform::SetDeviceId(place_.GetDeviceId());
  pack_->pack_instance(ins_vec, num);
  BuildSlotBatchGPU(pack_->ins_num());
#else
Y
yaoxuefeng 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
  for (int j = 0; j < use_slot_size_; ++j) {
    auto& feed = feed_vec_[j];
    if (feed == nullptr) {
      continue;
    }

    auto& slot_offset = offset_[j];
    slot_offset.clear();
    slot_offset.reserve(num + 1);
    slot_offset.push_back(0);

    int total_instance = 0;
    auto& info = used_slots_info_[j];
    // fill slot value with default value 0
    if (info.type[0] == 'f') {  // float
      auto& batch_fea = batch_float_feasigns_[j];
      batch_fea.clear();

      for (int i = 0; i < num; ++i) {
        auto r = ins_vec[i];
        size_t fea_num = 0;
        float* slot_values =
            r->slot_float_feasigns_.get_values(info.slot_value_idx, &fea_num);
        batch_fea.resize(total_instance + fea_num);
        memcpy(&batch_fea[total_instance], slot_values,
               sizeof(float) * fea_num);
        total_instance += fea_num;
        slot_offset.push_back(total_instance);
      }

      float* feasign = batch_fea.data();
      float* tensor_ptr =
          feed->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));

    } else if (info.type[0] == 'u') {  // uint64
      auto& batch_fea = batch_uint64_feasigns_[j];
      batch_fea.clear();

      for (int i = 0; i < num; ++i) {
        auto r = ins_vec[i];
        size_t fea_num = 0;
        uint64_t* slot_values =
            r->slot_uint64_feasigns_.get_values(info.slot_value_idx, &fea_num);
        if (fea_num > 0) {
          batch_fea.resize(total_instance + fea_num);
          memcpy(&batch_fea[total_instance], slot_values,
                 sizeof(uint64_t) * fea_num);
          total_instance += fea_num;
        }
        if (fea_num == 0) {
          batch_fea.resize(total_instance + fea_num);
          batch_fea[total_instance] = 0;
          total_instance += 1;
        }
        slot_offset.push_back(total_instance);
      }

      // no uint64_t type in paddlepaddle
      uint64_t* feasign = batch_fea.data();
      int64_t* tensor_ptr =
          feed->mutable_data<int64_t>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
    }

    if (info.dense) {
      if (info.inductive_shape_index != -1) {
        info.local_shape[info.inductive_shape_index] =
            total_instance / info.total_dims_without_inductive;
      }
2516
      feed->Resize(phi::make_ddim(info.local_shape));
Y
yaoxuefeng 已提交
2517 2518 2519 2520 2521
    } else {
      LoD data_lod{slot_offset};
      feed_vec_[j]->set_lod(data_lod);
    }
  }
2522
#endif
Y
yaoxuefeng 已提交
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
}

void SlotRecordInMemoryDataFeed::ExpandSlotRecord(SlotRecord* rec) {
  SlotRecord& ins = (*rec);
  if (ins->slot_float_feasigns_.slot_offsets.empty()) {
    return;
  }
  size_t total_value_size = ins->slot_float_feasigns_.slot_values.size();
  if (float_total_dims_size_ == total_value_size) {
    return;
  }
  int float_slot_num =
      static_cast<int>(float_total_dims_without_inductives_.size());
  CHECK(float_slot_num == float_use_slot_size_);
  std::vector<float> old_values;
  std::vector<uint32_t> old_offsets;
  old_values.swap(ins->slot_float_feasigns_.slot_values);
  old_offsets.swap(ins->slot_float_feasigns_.slot_offsets);

  ins->slot_float_feasigns_.slot_values.resize(float_total_dims_size_);
  ins->slot_float_feasigns_.slot_offsets.assign(float_slot_num + 1, 0);

  auto& slot_offsets = ins->slot_float_feasigns_.slot_offsets;
  auto& slot_values = ins->slot_float_feasigns_.slot_values;

  uint32_t offset = 0;
  int num = 0;
  uint32_t old_off = 0;
  int dim = 0;

  for (int i = 0; i < float_slot_num; ++i) {
    dim = float_total_dims_without_inductives_[i];
    old_off = old_offsets[i];
    num = static_cast<int>(old_offsets[i + 1] - old_off);
    if (num == 0) {
      // fill slot value with default value 0
      for (int k = 0; k < dim; ++k) {
        slot_values[k + offset] = 0.0;
      }
    } else {
      if (num == dim) {
        memcpy(&slot_values[offset], &old_values[old_off], dim * sizeof(float));
      } else {
        // position fea
        // record position index need fix values
        int pos_idx = static_cast<int>(old_values[old_off]);
        for (int k = 0; k < dim; ++k) {
          if (k == pos_idx) {
            slot_values[k + offset] = 1.0;
          } else {
            slot_values[k + offset] = 0.0;
          }
        }
      }
    }
    slot_offsets[i] = offset;
    offset += dim;
  }
  slot_offsets[float_slot_num] = offset;
  CHECK(float_total_dims_size_ == static_cast<size_t>(offset));
}

bool SlotRecordInMemoryDataFeed::Start() {
2586
  VLOG(4) << "entering SlotRecordInMemoryDataFeed::Start";
Y
yaoxuefeng 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
#ifdef _LINUX
  this->CheckSetFileList();
  if (input_channel_->Size() != 0) {
    std::vector<SlotRecord> data;
    input_channel_->Read(data);
  }
#endif
  if (batch_offsets_.size() > 0) {
    VLOG(3) << "batch_size offsets: " << batch_offsets_.size();
    enable_heterps_ = true;
    this->offset_index_ = 0;
  }
  this->finish_start_ = true;
2600 2601 2602 2603
#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
  CHECK(paddle::platform::is_gpu_place(this->place_));
  pack_ = BatchGpuPackMgr().get(this->GetPlace(), used_slots_info_);
#endif
Y
yaoxuefeng 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
  return true;
}

int SlotRecordInMemoryDataFeed::Next() {
#ifdef _LINUX
  this->CheckStart();

  VLOG(3) << "enable heter next: " << offset_index_
          << " batch_offsets: " << batch_offsets_.size();
  if (offset_index_ >= batch_offsets_.size()) {
    VLOG(3) << "offset_index: " << offset_index_
            << " batch_offsets: " << batch_offsets_.size();
    return 0;
  }
  auto& batch = batch_offsets_[offset_index_++];
  this->batch_size_ = batch.second;
  VLOG(3) << "batch_size_=" << this->batch_size_
          << ", thread_id=" << thread_id_;
  if (this->batch_size_ != 0) {
    PutToFeedVec(&records_[batch.first], this->batch_size_);
  } else {
    VLOG(3) << "finish reading for heterps, batch size zero, thread_id="
            << thread_id_;
  }
  VLOG(3) << "enable heter next: " << offset_index_
          << " batch_offsets: " << batch_offsets_.size()
          << " baych_size: " << this->batch_size_;

  return this->batch_size_;
#else
  return 0;
#endif
}

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
void SlotRecordInMemoryDataFeed::BuildSlotBatchGPU(const int ins_num) {
  int offset_cols_size = (ins_num + 1);
  size_t slot_total_num = (use_slot_size_ * offset_cols_size);
  pack_->resize_gpu_slot_offsets(slot_total_num * sizeof(size_t));

  auto& value = pack_->value();
  const UsedSlotGpuType* used_slot_gpu_types =
      static_cast<const UsedSlotGpuType*>(pack_->get_gpu_slots());
  FillSlotValueOffset(ins_num, use_slot_size_,
                      reinterpret_cast<size_t*>(pack_->gpu_slot_offsets()),
                      value.d_uint64_offset.data(), uint64_use_slot_size_,
                      value.d_float_offset.data(), float_use_slot_size_,
                      used_slot_gpu_types);
  size_t* d_slot_offsets = reinterpret_cast<size_t*>(pack_->gpu_slot_offsets());

  HostBuffer<size_t>& offsets = pack_->offsets();
  offsets.resize(slot_total_num);
  HostBuffer<void*>& h_tensor_ptrs = pack_->h_tensor_ptrs();
  h_tensor_ptrs.resize(use_slot_size_);
  // alloc gpu memory
  pack_->resize_tensor();

  LoDTensor& float_tensor = pack_->float_tensor();
  LoDTensor& uint64_tensor = pack_->uint64_tensor();

  int64_t float_offset = 0;
  int64_t uint64_offset = 0;

  // copy index
  CUDA_CHECK(cudaMemcpy(offsets.data(), d_slot_offsets,
                        slot_total_num * sizeof(size_t),
                        cudaMemcpyDeviceToHost));
  for (int j = 0; j < use_slot_size_; ++j) {
    auto& feed = feed_vec_[j];
    if (feed == nullptr) {
      h_tensor_ptrs[j] = nullptr;
      continue;
    }

    size_t* off_start_ptr = &offsets[j * offset_cols_size];

    int total_instance = static_cast<int>(off_start_ptr[offset_cols_size - 1]);
2681 2682
    CHECK(total_instance >= 0)
        << "slot idx:" << j << ", total instance:" << total_instance;
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
    auto& info = used_slots_info_[j];

    // fill slot value with default value 0
    if (info.type[0] == 'f') {  // float
      if (total_instance > 0) {
        feed->ShareDataWith(float_tensor.Slice(
            static_cast<int64_t>(float_offset),
            static_cast<int64_t>(float_offset + total_instance)));
        feed->Resize({total_instance, 1});
        float_offset += total_instance;
        h_tensor_ptrs[j] = feed->mutable_data<float>(this->place_);
      } else {
        h_tensor_ptrs[j] =
            feed->mutable_data<float>({total_instance, 1}, this->place_);
      }
    } else if (info.type[0] == 'u') {  // uint64
      if (total_instance > 0) {
        feed->ShareDataWith(uint64_tensor.Slice(
            static_cast<int64_t>(uint64_offset),
            static_cast<int64_t>(uint64_offset + total_instance)));
        feed->Resize({total_instance, 1});
        uint64_offset += total_instance;
        h_tensor_ptrs[j] = feed->mutable_data<int64_t>(this->place_);
      } else {
        h_tensor_ptrs[j] =
            feed->mutable_data<int64_t>({total_instance, 1}, this->place_);
      }
    }

    if (info.dense) {
      if (info.inductive_shape_index != -1) {
        info.local_shape[info.inductive_shape_index] =
            total_instance / info.total_dims_without_inductive;
      }
      feed->Resize(phi::make_ddim(info.local_shape));
    } else {
      LoD& lod = (*feed->mutable_lod());
      lod.resize(1);
      lod[0].resize(offset_cols_size);
      paddle::framework::MixVector<size_t> mixv_lod(&lod[0]);
      memcpy(mixv_lod.MutableData(platform::CPUPlace()), off_start_ptr,
             offset_cols_size * sizeof(size_t));
    }
  }
  void** dest_gpu_p = reinterpret_cast<void**>(pack_->slot_buf_ptr());
  CUDA_CHECK(cudaMemcpy(dest_gpu_p, h_tensor_ptrs.data(),
                        use_slot_size_ * sizeof(void*),
                        cudaMemcpyHostToDevice));

  CopyForTensor(ins_num, use_slot_size_, dest_gpu_p,
                (const size_t*)pack_->gpu_slot_offsets(),
                (const uint64_t*)value.d_uint64_keys.data(),
                (const int*)value.d_uint64_offset.data(),
                (const int*)value.d_uint64_lens.data(), uint64_use_slot_size_,
                (const float*)value.d_float_keys.data(),
                (const int*)value.d_float_offset.data(),
                (const int*)value.d_float_lens.data(), float_use_slot_size_,
                used_slot_gpu_types);
}

MiniBatchGpuPack::MiniBatchGpuPack(const paddle::platform::Place& place,
                                   const std::vector<UsedSlotInfo>& infos) {
  place_ = place;
  stream_ = dynamic_cast<platform::CUDADeviceContext*>(
                platform::DeviceContextPool::Instance().Get(place))
                ->stream();

  ins_num_ = 0;
  pv_num_ = 0;
  used_float_num_ = 0;
  used_uint64_num_ = 0;

  used_slot_size_ = static_cast<int>(infos.size());
  for (int i = 0; i < used_slot_size_; ++i) {
    auto& info = infos[i];
    if (info.type[0] == 'u') {
      gpu_used_slots_.push_back({1, info.slot_value_idx});
      ++used_uint64_num_;
    } else {
      gpu_used_slots_.push_back({0, info.slot_value_idx});
      ++used_float_num_;
    }
  }
  copy_host2device(&gpu_slots_, gpu_used_slots_.data(), gpu_used_slots_.size());

  slot_buf_ptr_ = memory::AllocShared(place_, used_slot_size_ * sizeof(void*));

  int device_id = place_.GetDeviceId();
  VLOG(3) << "begin get batch pack device id: " << device_id;
  // sync
  CUDA_CHECK(cudaStreamSynchronize(stream_));
}

MiniBatchGpuPack::~MiniBatchGpuPack() {}

void MiniBatchGpuPack::reset(const paddle::platform::Place& place) {
  place_ = place;
  stream_ = dynamic_cast<platform::CUDADeviceContext*>(
                platform::DeviceContextPool::Instance().Get(place))
                ->stream();
  ins_num_ = 0;
  pv_num_ = 0;
}

void MiniBatchGpuPack::pack_all_data(const SlotRecord* ins_vec, int num) {
  int uint64_total_num = 0;
  int float_total_num = 0;

  buf_.h_uint64_lens.resize(num + 1);
  buf_.h_uint64_lens[0] = 0;
  buf_.h_float_lens.resize(num + 1);
  buf_.h_float_lens[0] = 0;

  for (int i = 0; i < num; ++i) {
    auto r = ins_vec[i];
    uint64_total_num += r->slot_uint64_feasigns_.slot_values.size();
    buf_.h_uint64_lens[i + 1] = uint64_total_num;
    float_total_num += r->slot_float_feasigns_.slot_values.size();
    buf_.h_float_lens[i + 1] = float_total_num;
  }

  int uint64_cols = (used_uint64_num_ + 1);
  buf_.h_uint64_offset.resize(uint64_cols * num);
  buf_.h_uint64_keys.resize(uint64_total_num);

  int float_cols = (used_float_num_ + 1);
  buf_.h_float_offset.resize(float_cols * num);
  buf_.h_float_keys.resize(float_total_num);

  size_t fea_num = 0;
  uint64_total_num = 0;
  float_total_num = 0;
  for (int i = 0; i < num; ++i) {
    auto r = ins_vec[i];
    auto& uint64_feasigns = r->slot_uint64_feasigns_;
    fea_num = uint64_feasigns.slot_values.size();
    if (fea_num > 0) {
      memcpy(&buf_.h_uint64_keys[uint64_total_num],
             uint64_feasigns.slot_values.data(), fea_num * sizeof(uint64_t));
    }
    uint64_total_num += fea_num;
    // copy uint64 offset
    memcpy(&buf_.h_uint64_offset[i * uint64_cols],
           uint64_feasigns.slot_offsets.data(), sizeof(int) * uint64_cols);

    auto& float_feasigns = r->slot_float_feasigns_;
    fea_num = float_feasigns.slot_values.size();
    memcpy(&buf_.h_float_keys[float_total_num],
           float_feasigns.slot_values.data(), fea_num * sizeof(float));
    float_total_num += fea_num;

    // copy float offset
    memcpy(&buf_.h_float_offset[i * float_cols],
           float_feasigns.slot_offsets.data(), sizeof(int) * float_cols);
  }

  CHECK(uint64_total_num == static_cast<int>(buf_.h_uint64_lens.back()))
      << "uint64 value length error";
  CHECK(float_total_num == static_cast<int>(buf_.h_float_lens.back()))
      << "float value length error";
}
void MiniBatchGpuPack::pack_uint64_data(const SlotRecord* ins_vec, int num) {
  int uint64_total_num = 0;

  buf_.h_float_lens.clear();
  buf_.h_float_keys.clear();
  buf_.h_float_offset.clear();

  buf_.h_uint64_lens.resize(num + 1);
  buf_.h_uint64_lens[0] = 0;

  for (int i = 0; i < num; ++i) {
    auto r = ins_vec[i];
    uint64_total_num += r->slot_uint64_feasigns_.slot_values.size();
    buf_.h_uint64_lens[i + 1] = uint64_total_num;
  }

  int uint64_cols = (used_uint64_num_ + 1);
  buf_.h_uint64_offset.resize(uint64_cols * num);
  buf_.h_uint64_keys.resize(uint64_total_num);

  size_t fea_num = 0;
  uint64_total_num = 0;
  for (int i = 0; i < num; ++i) {
    auto r = ins_vec[i];
    auto& uint64_feasigns = r->slot_uint64_feasigns_;
    fea_num = uint64_feasigns.slot_values.size();
    if (fea_num > 0) {
      memcpy(&buf_.h_uint64_keys[uint64_total_num],
             uint64_feasigns.slot_values.data(), fea_num * sizeof(uint64_t));
    }
    uint64_total_num += fea_num;
    // copy uint64 offset
    memcpy(&buf_.h_uint64_offset[i * uint64_cols],
           uint64_feasigns.slot_offsets.data(), sizeof(int) * uint64_cols);
  }
  CHECK(uint64_total_num == static_cast<int>(buf_.h_uint64_lens.back()))
      << "uint64 value length error";
}
void MiniBatchGpuPack::pack_float_data(const SlotRecord* ins_vec, int num) {
  int float_total_num = 0;

  buf_.h_uint64_lens.clear();
  buf_.h_uint64_offset.clear();
  buf_.h_uint64_keys.clear();

  buf_.h_float_lens.resize(num + 1);
  buf_.h_float_lens[0] = 0;

  for (int i = 0; i < num; ++i) {
    auto r = ins_vec[i];
    float_total_num += r->slot_float_feasigns_.slot_values.size();
    buf_.h_float_lens[i + 1] = float_total_num;
  }

  int float_cols = (used_float_num_ + 1);
  buf_.h_float_offset.resize(float_cols * num);
  buf_.h_float_keys.resize(float_total_num);

  size_t fea_num = 0;
  float_total_num = 0;
  for (int i = 0; i < num; ++i) {
    auto r = ins_vec[i];
    auto& float_feasigns = r->slot_float_feasigns_;
    fea_num = float_feasigns.slot_values.size();
    memcpy(&buf_.h_float_keys[float_total_num],
           float_feasigns.slot_values.data(), fea_num * sizeof(float));
    float_total_num += fea_num;

    // copy float offset
    memcpy(&buf_.h_float_offset[i * float_cols],
           float_feasigns.slot_offsets.data(), sizeof(int) * float_cols);
  }
  CHECK(float_total_num == static_cast<int>(buf_.h_float_lens.back()))
      << "float value length error";
}

void MiniBatchGpuPack::pack_instance(const SlotRecord* ins_vec, int num) {
  ins_num_ = num;
  batch_ins_ = ins_vec;
  CHECK(used_uint64_num_ > 0 || used_float_num_ > 0);
  // uint64 and float
  if (used_uint64_num_ > 0 && used_float_num_ > 0) {
    pack_all_data(ins_vec, num);
  } else if (used_uint64_num_ > 0) {  // uint64
    pack_uint64_data(ins_vec, num);
  } else {  // only float
    pack_float_data(ins_vec, num);
  }
  // to gpu
  transfer_to_gpu();
}

void MiniBatchGpuPack::transfer_to_gpu(void) {
  copy_host2device(&value_.d_uint64_lens, buf_.h_uint64_lens);
  copy_host2device(&value_.d_uint64_keys, buf_.h_uint64_keys);
  copy_host2device(&value_.d_uint64_offset, buf_.h_uint64_offset);

  copy_host2device(&value_.d_float_lens, buf_.h_float_lens);
  copy_host2device(&value_.d_float_keys, buf_.h_float_keys);
  copy_host2device(&value_.d_float_offset, buf_.h_float_offset);
  CUDA_CHECK(cudaStreamSynchronize(stream_));
}
#endif

W
Wang Guibao 已提交
2948 2949
}  // namespace framework
}  // namespace paddle