utils.py 48.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import ast
16
import astor
17 18
import atexit
import copy
19
import collections
20
from paddle.utils import gast
21
import inspect
22 23
import os
import sys
24
import shutil
25
import tempfile
26
import textwrap
27
import numpy as np
28

29
import paddle
30
from paddle.fluid import unique_name
31
from paddle.fluid.data_feeder import convert_dtype
32
from paddle.fluid import core
33 34
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers import assign
35 36
import collections
from functools import reduce
37
import warnings
38

39 40 41 42 43
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
PADDLE_MODULE_PREFIX = 'paddle.'
DYGRAPH_MODULE_PREFIX = 'paddle.fluid.dygraph'
DYGRAPH_TO_STATIC_MODULE_PREFIX = 'paddle.fluid.dygraph.dygraph_to_static'
44 45
GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
46
ALREADY_D2S = '__already_d2s'
47
ARGS_NAME = '__args'
48 49
# NOTE(liym27): Please use `getattr(ast_node, ORIGI_INFO)` instead of . operation to get the original information of ast node.
ORIGI_INFO = "Original information of source code for ast node."
50

51 52 53

class BaseNodeVisitor(gast.NodeVisitor):
    """
54
    Implement customized NodeVisitor inherited from gast.NodeVisitor.
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


73 74 75 76 77 78 79 80 81 82 83 84 85
# imp is deprecated in python3
from importlib.machinery import SourceFileLoader

dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}

86
DEL_TEMP_DIR = True  # A flag to avoid atexit.register more than once
87 88
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
89 90
FOR_ITER_TARGET_PREFIX = '__for_loop_iter_target'
FOR_ITER_ITERATOR_PREFIX = '__for_loop_iter_iterator'
91 92 93 94 95
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'

96
RE_PYNAME = '[a-zA-Z0-9_]+'
97
RE_PYMODULE = r'[a-zA-Z0-9_]+\.'
98

99 100 101 102 103 104 105 106
# FullArgSpec is valid from Python3. Defined a Namedtuple to
# to make it available in Python2.
FullArgSpec = collections.namedtuple('FullArgSpec', [
    'args', 'varargs', 'varkw', 'defaults', 'kwonlyargs', 'kwonlydefaults',
    'annotations'
])


107 108 109 110 111 112 113
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

114
     Note:
115 116 117 118 119 120 121 122 123 124
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
125
           size. For example, it is useful to set changeable batch size as "None"
126 127 128 129 130 131 132 133 134 135 136 137
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
138
    for i in range(len(shape)):
139 140 141
        if shape[i] is None:
            shape[i] = -1

142 143 144 145 146 147 148 149
    return helper.create_global_variable(name=name,
                                         shape=shape,
                                         dtype=dtype,
                                         type=core.VarDesc.VarType.LOD_TENSOR,
                                         stop_gradient=True,
                                         lod_level=lod_level,
                                         is_data=True,
                                         need_check_feed=False)
150

151

152 153 154 155
def create_undefined_variable():
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_NO_VALUE_MAGIC_NUM
    var = data_layer_not_check(unique_name.generate("undefined_var"), [1],
                               "float64")
156
    var.stop_gradient = False
157 158 159 160
    # the variable is created in block(0), we append assign in block(0) either.
    helper = LayerHelper('create_undefined_variable', **locals())
    saved_block_ids = helper.main_program.current_block_idx
    helper.main_program.current_block_idx = 0
161
    assign(RETURN_NO_VALUE_MAGIC_NUM, var)
162
    helper.main_program.current_block_idx = saved_block_ids
163
    return var
164 165


166 167 168 169 170 171 172 173 174 175
class UndefinedVar:

    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
            "local variable '{}' should be created before using it.")


176 177 178 179 180 181
class Dygraph2StaticException(Exception):

    def __init__(self, message):
        super().__init__(message)


182 183 184 185 186 187 188
def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


189 190 191 192 193
def getfullargspec(target):
    if hasattr(inspect, "getfullargspec"):
        return inspect.getfullargspec(target)
    else:
        argspec = inspect.getargspec(target)
194 195 196 197 198 199 200
        return FullArgSpec(args=argspec.args,
                           varargs=argspec.varargs,
                           varkw=argspec.keywords,
                           defaults=argspec.defaults,
                           kwonlyargs=[],
                           kwonlydefaults=None,
                           annotations={})
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222


def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
    fullargspec = getfullargspec(function)
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
        default_kwarg_names = arg_names[-len(default_values):]
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
223 224 225 226 227 228 229 230 231
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
    fullargspec = getfullargspec(function)
    varargs = fullargspec.varargs
    return varargs


232 233 234 235 236 237 238 239
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

240
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
241
    """
242
    if isinstance(x, (tuple, list, set)):
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

260

261 262 263 264 265 266 267
def _is_api_in_module_helper(obj, module_prefix):
    m = inspect.getmodule(obj)
    return m is not None and m.__name__.startswith(module_prefix)


def is_api_in_module(node, module_prefix):
    assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
268 269 270 271 272 273 274 275

    # Python can have gast.Call as function, for example: covert_call(func)(x)
    # We only check the most outside function
    func_node = node.func
    while isinstance(func_node, gast.Call):
        func_node = func_node.func

    func_str = astor.to_source(gast.gast_to_ast(func_node)).strip()
276
    try:
277 278 279 280 281
        # TODO(liym27):
        #  Consider a better to import modules like:
        #  source_file = inspect.getfile(dyfunc)
        #  import_statements = ImportVisitor(source_file).transform()
        #  import_str = "".join(import_statements)
282
        import paddle
L
liym27 已提交
283
        import paddle.fluid as fluid
284
        import paddle.fluid.dygraph as dygraph
L
liym27 已提交
285
        import paddle.fluid.layers as layers
286
        import paddle.jit.dy2static as _jst
287

288
        from paddle.fluid.dygraph import to_variable
289 290
        from paddle import to_tensor

291 292
        return eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, module_prefix))
293
    except Exception:
294 295 296 297
        return False


def is_dygraph_api(node):
298

299
    # Note: A api in module dygraph_to_static is not a real dygraph api.
300
    if is_api_in_module(node, DYGRAPH_TO_STATIC_MODULE_PREFIX):
301 302
        return False

303 304
    # TODO(liym27): A better way to determine whether it is a dygraph api.
    #  Consider the decorator @dygraph_only
305
    return is_api_in_module(node, DYGRAPH_MODULE_PREFIX)
306 307 308


def is_paddle_api(node):
309 310 311 312 313 314
    return is_api_in_module(node, PADDLE_MODULE_PREFIX)


def is_paddle_func(func):
    m = inspect.getmodule(func)
    return m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
315 316 317 318 319 320 321 322 323 324 325 326


# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
def is_numpy_api(node):
    assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
    func_str = astor.to_source(gast.gast_to_ast(node.func))
    try:
        import numpy as np
        module_result = eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, "numpy"))
        # BUG: np.random.uniform doesn't have module and cannot be analyzed
        # TODO: find a better way
327 328
        return module_result or (func_str.startswith("numpy.")
                                 or func_str.startswith("np."))
329
    except Exception:
330 331 332
        return False


333 334
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
335
    func_src = astor.to_source(gast.gast_to_ast(node.func))
336 337 338 339 340 341 342 343 344 345 346 347
    import paddle.fluid as fluid
    full_args = eval("inspect.getargspec({})".format(func_src))
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
348 349 350
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
            "to static graph at present.".format(dygraph_class))
351 352 353 354 355 356 357 358 359 360


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
361 362
            gast.keyword(arg="num_flatten_dims",
                         value=gast.Constant(value=-1, kind=None)))
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

381 382 383 384 385 386 387 388 389
    node.func = gast.Attribute(attr=static_api,
                               ctx=gast.Load(),
                               value=gast.Attribute(attr='layers',
                                                    ctx=gast.Load(),
                                                    value=gast.Name(
                                                        ctx=gast.Load(),
                                                        id='fluid',
                                                        annotation=None,
                                                        type_comment=None)))
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

410
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
411 412 413
    import paddle.fluid as fluid
    if method_name == "__init__" or eval(
            "issubclass({}, fluid.dygraph.Layer)".format(class_src)):
414 415
        full_args = eval("inspect.getargspec({}.{})".format(
            class_src, method_name))
416 417 418 419 420 421 422 423 424 425 426
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
427 428 429


def create_api_shape_node(tensor_shape_node):
430 431 432 433 434
    assert isinstance(tensor_shape_node,
                      (gast.Name, gast.Attribute, gast.Subscript))

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
435
            func=gast.parse('paddle.shape').body[0].value,
436 437 438
            args=[tensor_shape_node],
            keywords=[])
        return api_shape_node
439 440 441

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
442
            func=gast.parse('paddle.shape').body[0].value,
443 444 445 446 447 448 449 450
            args=[tensor_shape_node.value],
            keywords=[])
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
451 452


453
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
454 455
    return gast.parse('%s = paddle.full(%s, "%s", %s)' %
                      (name, str(shape), str(value), dtype))
456 457 458 459 460 461 462 463 464


def get_attribute_full_name(node):
    assert isinstance(
        node,
        gast.Attribute), "Input non-Attribute node to get attribute full name"
    return astor.to_source(gast.gast_to_ast(node)).strip()


465
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
466
    """
467 468 469 470 471 472 473
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
474
    """
475
    if isinstance(name_ids, str):
476 477
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
478 479 480
        raise TypeError(
            'name_ids must be list or tuple or set, but received %s' %
            type(type(name_ids)))
481 482 483 484 485 486 487 488 489 490

    def create_node_for_name(name):
        if '.' not in name:
            return gast.Name(id=name,
                             ctx=ctx,
                             annotation=None,
                             type_comment=None)
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
491
    if len(gast_names) == 1 and not gen_tuple_if_single:
492 493 494 495 496 497 498 499 500 501 502 503 504
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
505 506
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
507 508
    else:
        nodes.append(gast.Return(value=None))
509 510 511 512 513 514
    func_def_node = gast.FunctionDef(name=name,
                                     args=input_args,
                                     body=nodes,
                                     decorator_list=[],
                                     returns=None,
                                     type_comment=None)
515 516 517
    return func_def_node


518 519 520 521 522 523 524 525
def index_in_list(array_list, item):
    try:
        return array_list.index(item)
    except ValueError:
        # Item not in array_list
        return -1


526 527 528 529 530 531 532 533 534
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
def get_temp_dir():
    """
    Return @to_static temp directory.
    """
    dir_name = "paddle/to_static_tmp"
    temp_dir = os.path.join(os.path.expanduser('~/.cache'), dir_name)
    is_windows = sys.platform.startswith('win')
    if is_windows:
        temp_dir = os.path.normpath(temp_dir)

    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)

    return temp_dir


551
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
552 553
    """
    Transform modified AST of decorated function into python callable object.
554 555
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
556
    """
557

558 559 560 561 562 563 564 565 566 567 568 569
    def remove_if_exit(dir_path):
        if os.path.exists(dir_path):
            shutil.rmtree(dir_path)

    def func_prefix(func):
        pre_fix = func.__name__
        if hasattr(func, '__self__'):
            try:
                pre_fix = func.__self__.__class__.__name__ + '_' + func.__name__
            except:
                pass
        return pre_fix
570

571
    source = ast_to_source_code(ast_root)
572
    source = _inject_import_statements() + source
573
    temp_dir = get_temp_dir()
574
    f = tempfile.NamedTemporaryFile(mode='w',
575
                                    prefix=func_prefix(dyfunc),
576 577
                                    suffix='.py',
                                    delete=False,
578
                                    dir=temp_dir,
579
                                    encoding='utf-8')
580 581 582 583
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

584 585 586 587 588
    global DEL_TEMP_DIR
    if delete_on_exit and DEL_TEMP_DIR:
        # Clear temporary files in TEMP_DIR while exitting Python process
        atexit.register(remove_if_exit, dir_path=temp_dir)
        DEL_TEMP_DIR = False
589

590
    func_name = dyfunc.__name__
591
    module = SourceFileLoader(module_name, f.name).load_module()
W
WeiXin 已提交
592 593 594 595 596 597 598 599
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
        callable_func = getattr(module, '__i_m_p_l__')
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
600 601 602
        raise ValueError(
            'Function: %s doesn\'t exist in the Module transformed from AST.' %
            func_name)
603 604 605 606 607 608 609 610
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


611 612
def _inject_import_statements():
    import_statements = [
613
        "import paddle", "from paddle import Tensor",
614
        "import paddle.fluid as fluid", "import paddle.jit.dy2static as _jst",
615 616
        "from typing import *", "import numpy as np", "import warnings",
        "warnings.filterwarnings('ignore', category=DeprecationWarning)"
617 618 619 620
    ]
    return '\n'.join(import_statements) + '\n'


621 622 623 624 625
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
626

627
    for k, v in src_globals.items():
628 629 630
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
631 632


633 634 635 636 637 638
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
639 640
            "The type of 'function' should be a function or method, but received {}."
            .format(type(function).__name__))
641
    source_code_list, _ = inspect.getsourcelines(function)
642
    # Replace comments with blank lines so that error messages are not misplaced
643
    source_code_list = [
644 645
        line if not line.lstrip().startswith('#') else '\n'
        for line in source_code_list
646 647
    ]
    source_code = ''.join(source_code_list)
648 649 650 651 652 653
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


654 655
def ast_to_source_code(ast_node):
    """
656
    Transforms ast node into source code.
657 658 659 660 661 662 663
    """
    if not isinstance(ast_node, (gast.AST, ast.AST)):
        raise TypeError(
            "Type of ast_root should be gast.AST or ast.AST, but received %s." %
            type(ast_node))
    if isinstance(ast_node, gast.AST):
        ast_node = gast.gast_to_ast(ast_node)
664 665 666 667 668 669

    # Do not wrap lines even if they are too long
    def pretty_source(source):
        return ''.join(source)

    source_code = astor.to_source(ast_node, pretty_source=pretty_source)
670
    return source_code
L
liym27 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693


def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
    is_compare_node = isinstance(node, (gast.Compare, gast.BoolOp, gast.UnaryOp,
                                        gast.For, gast.If, gast.While))
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
694 695 696
            if (isinstance(child, gast.Constant)
                    and child.value is None) or (isinstance(child, gast.Name)
                                                 and child.id == 'None'):
L
liym27 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
714
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
715
        6. calls `range` function in `for` statement and the argument of range is Tensor.
716 717
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

    def __init__(self,
                 ast_node,
                 static_analysis_visitor=None,
                 node_var_type_map=None):
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
            ast_node)
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            from .static_analysis import StaticAnalysisVisitor
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
        self.node_to_wrapper_map = self.static_analysis_visitor.get_node_to_wrapper_map(
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
753 754 755 756 757 758 759 760
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
761 762 763 764 765 766 767 768 769
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
770 771 772 773 774 775 776 777 778 779 780 781 782 783
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
                if node.iter.func.id == "range" or node.iter.func.id == "enumerate":
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
784 785
            else:
                return
786 787 788
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
789
        else:
L
liym27 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
828
            self.visit(child)
L
liym27 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
        from paddle.fluid.dygraph.dygraph_to_static.static_analysis import NodeVarType

        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
876
            if name_id and isinstance(name_id, str):
L
liym27 已提交
877
                var_type = self.node_var_type_map.get(name_id, None)
878
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
879 880
                    return True
        # if not found, look up the node_to_wrapper_map by node.
881
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
882
        if wrapper_node is not None:
883
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
884 885 886 887 888 889
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
890 891


892 893 894 895 896 897 898 899 900 901 902 903 904 905
# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
    while (_is_wrapped(unwrapped_f)):
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
906 907


C
Chen Weihang 已提交
908
def input_specs_compatible(src_input_specs, desired_input_specs):
909 910 911 912
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
913 914 915 916
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
917 918
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
919 920
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
921
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
922 923 924 925
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
926 927 928 929 930 931 932 933
        for (src_spec, desired_spec) in zip(src_input_specs,
                                            desired_input_specs):
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
                    desired_spec, paddle.static.InputSpec):
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
934 935
                    return False

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
963 964

    return True
965

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

987

988 989 990
class NameScope:

    def __init__(self):
991 992
        """
            A NameScope is a object which manager all the variable names.
993 994 995 996 997 998 999 1000 1001 1002 1003
            only FunctionDef and Controlflow node will have a namescope property.

            type can be "function" and "controlflow"

            we don't analyze the read only variable because they don't affect the analysis.
        """
        self.globals = set()
        self.nonlocals = set()
        self.args = set()
        self.father = None  # point to the nearest function name scope.
        self.w_vars = set()  # all qualified + normal names been stored
1004
        self.created = set()  # useful for control flow compatibility
1005
        # only valid in control_flow nodes
1006 1007
        # may be remove later.
        self.push_pop_vars = set()  # we call push and pop in the vars
1008 1009 1010 1011 1012

    def set_father(self, father):
        self.father = father

    def existed_vars(self):
1013
        """ vars existing in current scope.
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
            they must not contain qualified names.
        """
        local_vars = self.w_vars - self.globals - self.nonlocals - self.args
        return set(filter(lambda x: '.' not in x, local_vars))

    def created_vars(self):
        return self.created

    def modified_vars(self):
        # may be globals / non-locals / args / qualified names and created_vars
        return self.w_vars

1026
    def variadic_length_vars(self):
1027
        """
1028
        At present, we do not support global append, such as
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
        import numpy as np
        a = []
        def func():
            a.append() # global names `a`, we will raise a warning.
            p.append(a, 1) # global names `np`, we will raise a warning.
        """
        non_global_push_pop_names = []
        for var in self.push_pop_vars:
            if self._is_simple_name(var) and self.is_global_var(var):
                warnings.warn(
                    f"Find variable `{var}` defined in global scope"
                    f" and call `{var}.append() or {var}.pop()`"
                    f", which will be ignored and never be transfered into"
                    f" tensor array.")
            else:
                non_global_push_pop_names.append(var)
        return set(non_global_push_pop_names)
1047

1048 1049 1050 1051 1052
    def control_flow_vars(self):
        valid_names = self.w_vars
        tmp = self.father.global_vars & valid_names,
        return {"global": tmp, "nonlocal": self.w_vars - tmp}

1053 1054 1055 1056 1057
    def _is_simple_name(self, name):
        if '.' in name or '[' in name: return False
        return True

    def is_global_var(self, name):
1058
        """
1059
        Return whether the name is a var created in global scope.
1060
        Search from bottom to top. If it is not created or modified,
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        it means global vars; otherwise, it means local vars.
        Only valid after FunctionNameLivenessAnalysis visitor.
        """
        assert self._is_simple_name(
            name), "is_global_var accept a simple name, but get `{name}`."
        ancestor = self
        while ancestor is not None:
            if name in ancestor.globals: return True
            if name in (ancestor.nonlocals | ancestor.w_vars): return False
            ancestor = ancestor.father
        return True

    def is_local_var(self, name):
        return not self.is_global_var(name)
1075 1076 1077 1078 1079 1080

    def merge_from(self, name_scope):
        self.globals |= name_scope.globals
        self.nonlocals |= name_scope.nonlocals
        self.args |= name_scope.args
        self.w_vars |= name_scope.w_vars
1081
        self.push_pop_vars |= name_scope.push_pop_vars
1082 1083 1084 1085 1086 1087


class FunctionNameLivenessAnalysis(gast.NodeVisitor):
    """ analyze the liveness of a function.

        every variables stored in this scope will be collected,
1088
        in addition with global/nonlocal information and
1089
        push_pop information.
1090 1091 1092 1093

        1. global variable is stored in node.var_globals.
        2. nonlocal variable is stored in node.var_nonlocals.
        3. arguments is stored in node.var_args.
1094
        4. if a variable's push and pop attribute is called,
1095 1096
           it will be collected in push_pop_vars. They are
           used for transformation to tensor_array.
1097
           NOTE: push_pop_vars **may not** in w_vars.
1098 1099
           a.push(0) don't modify the variable a, but the content
           of a.
1100 1101 1102 1103 1104 1105 1106 1107 1108

        For example:

        def func(*args, **kargs):
            a = 12
            global i,j
            nonlocal x,y
            print(a)
            i = k
1109 1110
            b = []
            c = [1,2,3]
1111 1112
            for m in range(10):
                q = 12
1113 1114
                b.push(1)
                c.pop()
1115 1116

        After this visitor we have:
1117 1118 1119 1120
        # node is the FunctionDef node with name: "func"
        node.pd_scope = NameScope(
            globals = ['i', 'j'],
            nonlocals = ['x', 'y'],
1121
            args = ['args', 'kargs'],
1122 1123
            wr_vars = ['a', 'i', 'q', 'm', 'c', 'b']
            push_pop_vars = ['b', 'c']
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
        )
    """

    def __init__(self, root_node):
        self.scope_node_stack = []  # controlflow, functiondef node
        self.visit(root_node)

    def _reset_name_scope(self, node):
        # always reset the node as empty namescope.
        setattr(node, "pd_scope", NameScope())

    def _get_name_scope(self, node):
        if not hasattr(node, "pd_scope"):
            setattr(node, "pd_scope", NameScope())
        return node.pd_scope

    def _current_name_scope(self):
        return self._get_name_scope(self.scope_node_stack[-1])

    def _father_name_scope(self):
        if len(self.scope_node_stack) == 1: return None
        return self._get_name_scope(self.scope_node_stack[-2])

    def _nearest_function_scope(self):
        if len(self.scope_node_stack) == 1: return None
        for node in self.scope_node_stack[-2::-1]:
            if isinstance(node, gast.FunctionDef):
                return self._get_name_scope(node)

1153 1154
    def visit_ListComp(self, node):
        """ [ i for i in range(10) ]
1155
            In this case, `i` will not created in FunctionScope.
1156 1157 1158 1159 1160 1161 1162 1163 1164
            We don't collect `i` by not calling generic_visit.
        """
        pass

    def visit_DictComp(self, node):
        """ the same as ListComp.
        """
        pass

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
    def visit_Name(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            self._current_name_scope().w_vars.add(node.id)

    def visit_FunctionDef(self, node):

        def pre_func():
            self._current_name_scope().args |= set(
                self._get_argument_names(node))

        def post_func():
1178
            """ NOTE: why we need merge w_vars and push_pop_vars here ?
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
                because we do ifelse_transformer after loop_transformer. Loops will changed into functioons. but we know this function will be called in if. so we add w_vars to father function scope.
            """
            from paddle.fluid.dygraph.dygraph_to_static.loop_transformer import WHILE_CONDITION_PREFIX, WHILE_BODY_PREFIX, FOR_CONDITION_PREFIX, FOR_BODY_PREFIX
            from paddle.fluid.dygraph.dygraph_to_static.ifelse_transformer import TRUE_FUNC_PREFIX, FALSE_FUNC_PREFIX
            control_flow_function_def = [
                WHILE_BODY_PREFIX, WHILE_BODY_PREFIX, FOR_CONDITION_PREFIX,
                FOR_BODY_PREFIX, TRUE_FUNC_PREFIX, FALSE_FUNC_PREFIX
            ]

            def is_control_flow_def_node():
                for prefix in control_flow_function_def:
                    if node.name.startswith(prefix): return True
                return False

            if self._father_name_scope() and is_control_flow_def_node():
                self._father_name_scope().w_vars |= self._current_name_scope(
                ).w_vars
1196 1197
                self._father_name_scope(
                ).push_pop_vars |= self._current_name_scope().push_pop_vars
1198 1199 1200 1201 1202 1203 1204 1205 1206

        self._visit_scope_node(node, pre_func, post_func)

    def _visit_scope_node(self, node, pre_func, post_func):
        """ scope node main visit logic.
            pre_func and post_func is callbacks
        """
        self._reset_name_scope(node)
        self.scope_node_stack.append(node)
1207
        self._current_name_scope().set_father(self._nearest_function_scope())
1208 1209 1210 1211 1212 1213 1214 1215 1216
        if pre_func: pre_func()
        self.generic_visit(node)
        if post_func: post_func()
        self.scope_node_stack.pop()

    def _visit_controlflow_node(self, node):

        def post_func():
            self._father_name_scope().merge_from(self._current_name_scope())
1217 1218
            self._nearest_function_scope().merge_from(
                self._current_name_scope())
1219 1220
            self._current_name_scope().created = self._nearest_function_scope(
            ).existed_vars() - node.before_created
1221 1222 1223
            # gather created vars into father and used in CreateUndefinedVarTransform
            self._nearest_function_scope().created |= self._current_name_scope(
            ).created
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

        def pre_func():
            setattr(node, "before_created",
                    self._nearest_function_scope().existed_vars())

        self._visit_scope_node(node, pre_func, post_func)

    def visit_For(self, node):
        self._visit_controlflow_node(node)

    def visit_While(self, node):
        self._visit_controlflow_node(node)

    def visit_If(self, node):
        self._visit_controlflow_node(node)

    def visit_Global(self, node):
        self._current_name_scope().globals |= set(node.names)

    def visit_Nonlocal(self, node):
        self._current_name_scope().nonlocals |= set(node.names)

    def visit_Attribute(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            name = ast_to_source_code(node).strip()
            self._current_name_scope().w_vars.add(name)

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    def visit_Call(self, node):
        self.generic_visit(node)
        if not isinstance(node.func, gast.Attribute):
            return
        variadic_length_method = ['append', 'pop']
        if node.func.attr not in variadic_length_method:
            return
        # we don't treat push and pop as a write operator. such as a[i]=10 is not modify a.
        name = ast_to_source_code(node.func.value).strip()
        self._current_name_scope().push_pop_vars.add(name)

1264 1265
    def _get_argument_names(self, node):
        """ get all arguments name in the functiondef node.
1266
            this node is local to the function and shouldn't
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
            be created.
        """
        assert isinstance(
            node, gast.FunctionDef), "Input node is not function define node"
        names = [a for a in node.args.args]
        names.append(node.args.vararg)
        names.append(node.args.kwarg)
        names = [i.id for i in names if i is not None]
        return names


1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
        """.format(func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX))
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1295
    node = create_nonlocal_stmt_nodes(names)
1296 1297
    if not names:
        return empty_node()
1298
    if node == []:
1299 1300
        nonlocal_vars = "\n"
    else:
1301
        nonlocal_vars = ast_to_source_code(node[0])
1302 1303
    template = """
    def {func_name}():
1304
        {nonlocal_vars}
1305
        return {vars},
1306 1307 1308
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
1309
        nonlocal_vars=nonlocal_vars,
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
        vars=",".join(names))
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
        """.format(func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
                   args=ARGS_NAME)
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1332
    node = create_nonlocal_stmt_nodes(names)
1333 1334
    if not names:
        return empty_node()
1335
    if node == []:
1336 1337
        nonlocal_vars = "\n"
    else:
1338
        nonlocal_vars = ast_to_source_code(node[0])
1339 1340
    template = """
    def {func_name}({args}):
1341
        {nonlocal_vars}
1342
        {vars}, = {args}
1343 1344 1345 1346
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
1347
        nonlocal_vars=nonlocal_vars,
1348 1349 1350 1351
        vars=",".join(names))
    return gast.parse(textwrap.dedent(func_def)).body[0]


1352
def create_nonlocal_stmt_nodes(names):
1353 1354 1355
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
1356
    mapped = list(filter(lambda n: '[' not in n, mapped))
1357 1358 1359
    names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
1360 1361
    if not names:
        return []
1362
    func_code = "nonlocal {}".format(','.join(names))
1363
    return [gast.parse(func_code).body[0]]
1364 1365 1366


class GetterSetterHelper:
1367
    """ we have two classes of names in setter and getter function:
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
        w_vars(loop_vars) + push_pop_vars
        To simplify the setter logic in convert_while and convert_cond,
        we extract the helper class here.
    """

    def __init__(self, getter_func, setter_func, *name_lists):
        name_lists = map(lambda x: [] if x is None else x, name_lists)
        name_sets = map(lambda x: set(x), name_lists)
        self._union = list(reduce(lambda x, y: x | y, name_sets, set()))
        self._union.sort()
        self.getter = getter_func
        self.setter = setter_func
        self.name2id = {name: idx for idx, name in enumerate(self._union)}

    def union(self):
        return self._union

    def get(self, names):
        if names is None: names = []
        vars = self.getter()
        if vars is None: return tuple()
        for n in names:
            assert n in self.name2id, "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys())
        return tuple(map(lambda n: vars[self.name2id[n]], names))

    def set(self, names, values):
        if names is None: names = []
        if values is None: values = []
        vars = self.getter()
        if vars is None: return
        for n in names:
            assert n in self.name2id, "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys())
        vars = list(vars)
        indices = list(map(lambda n: self.name2id[n], names))
        for i, v in zip(indices, values):
            vars[i] = v
        self.setter(vars)


def create_name_str(name_ids):
    """
    Return "('x', 'y')" for [x, y]
    """
    if not name_ids:
        return 'None'

1416
    names_str = ["'%s'" % (name.replace("'", "\\'")) for name in name_ids]
1417
    return "(%s, )" % ','.join(names_str)