array_ref.h 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
// This file copy from llvm/ADT/ArrayRef.h, version: 12.0.0
// Modified the following points
// 1. remove hash_value functions
// 2. replace with the llvm::NoneType with paddle::none_t
// 3. remove drop_while, drop_until, take_while, take_until methods

//===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef PADDLE_UTILS_ARRAY_REF_H_
#define PADDLE_UTILS_ARRAY_REF_H_

#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <initializer_list>
#include <iterator>
#include <memory>
#include <type_traits>
#include <vector>

#include "paddle/utils/none.h"
#include "paddle/utils/small_vector.h"

namespace paddle {

/// ArrayRef - Represent a constant reference to an array (0 or more elements
/// consecutively in memory), i.e. a start pointer and a length.  It allows
/// various APIs to take consecutive elements easily and conveniently.
///
/// This class does not own the underlying data, it is expected to be used in
/// situations where the data resides in some other buffer, whose lifetime
/// extends past that of the ArrayRef. For this reason, it is not in general
/// safe to store an ArrayRef.
///
/// This is intended to be trivially copyable, so it should be passed by
/// value.
template <typename T>
class ArrayRef {
 public:
  using iterator = const T *;
  using const_iterator = const T *;
  using size_type = size_t;
  using reverse_iterator = std::reverse_iterator<iterator>;

 private:
  /// The start of the array, in an external buffer.
  const T *Data = nullptr;

  /// The number of elements.
  size_type Length = 0;

 public:
  /// @name Constructors
  /// @{

  /// Construct an empty ArrayRef.
  /*implicit*/ ArrayRef() = default;

  /// Construct an empty ArrayRef from None.
  /*implicit*/ ArrayRef(none_t) {}

  /// Construct an ArrayRef from a single element.
  /*implicit*/ ArrayRef(const T &OneElt) : Data(&OneElt), Length(1) {}

  /// Construct an ArrayRef from a pointer and length.
  /*implicit*/ ArrayRef(const T *data, size_t length)
      : Data(data), Length(length) {}

  /// Construct an ArrayRef from a range.
  ArrayRef(const T *begin, const T *end) : Data(begin), Length(end - begin) {}

  /// Construct an ArrayRef from a SmallVector. This is templated in order to
  /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
  /// copy-construct an ArrayRef.
  template <typename U>
  /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
      : Data(Vec.data()), Length(Vec.size()) {}

  /// Construct an ArrayRef from a std::vector.
  template <typename A>
  /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
      : Data(Vec.data()), Length(Vec.size()) {}

  /// Construct an ArrayRef from a std::array
  template <size_t N>
  /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr)
      : Data(Arr.data()), Length(N) {}

  /// Construct an ArrayRef from a C array.
  template <size_t N>
  /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {}

  /// Construct an ArrayRef from a std::initializer_list.
  /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
      : Data(Vec.begin() == Vec.end() ? (T *)nullptr : Vec.begin()),
        Length(Vec.size()) {}

  /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
  /// ensure that only ArrayRefs of pointers can be converted.
  template <typename U>
  ArrayRef(const ArrayRef<U *> &A,
           std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
               * = nullptr)
      : Data(A.data()), Length(A.size()) {}

  /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
  /// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
  /// whenever we copy-construct an ArrayRef.
  template <typename U, typename DummyT>
  /*implicit*/ ArrayRef(
      const SmallVectorTemplateCommon<U *, DummyT> &Vec,
      std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * =
          nullptr)
      : Data(Vec.data()), Length(Vec.size()) {}

  /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
  /// to ensure that only vectors of pointers can be converted.
  template <typename U, typename A>
  ArrayRef(
      const std::vector<U *, A> &Vec,
      std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * = 0)
      : Data(Vec.data()), Length(Vec.size()) {}

  /// @}
  /// @name Simple Operations
  /// @{

  iterator begin() const { return Data; }
  iterator end() const { return Data + Length; }

  reverse_iterator rbegin() const { return reverse_iterator(end()); }
  reverse_iterator rend() const { return reverse_iterator(begin()); }

  /// empty - Check if the array is empty.
  bool empty() const { return Length == 0; }

  const T *data() const { return Data; }

  /// size - Get the array size.
  size_t size() const { return Length; }

  /// front - Get the first element.
  const T &front() const {
    assert(!empty());
    return Data[0];
  }

  /// back - Get the last element.
  const T &back() const {
    assert(!empty());
    return Data[Length - 1];
  }

  // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
  template <typename Allocator>
  ArrayRef<T> copy(Allocator &A) {
    T *Buff = A.template Allocate<T>(Length);
    std::uninitialized_copy(begin(), end(), Buff);
    return ArrayRef<T>(Buff, Length);
  }

  /// equals - Check for element-wise equality.
  bool equals(ArrayRef RHS) const {
    if (Length != RHS.Length) return false;
    return std::equal(begin(), end(), RHS.begin());
  }

  /// slice(n, m) - Chop off the first N elements of the array, and keep M
  /// elements in the array.
  ArrayRef<T> slice(size_t N, size_t M) const {
    assert(N + M <= size() && "Invalid specifier");
    return ArrayRef<T>(data() + N, M);
  }

  /// slice(n) - Chop off the first N elements of the array.
  ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); }

  /// Drop the first \p N elements of the array.
  ArrayRef<T> drop_front(size_t N = 1) const {
    assert(size() >= N && "Dropping more elements than exist");
    return slice(N, size() - N);
  }

  /// Drop the last \p N elements of the array.
  ArrayRef<T> drop_back(size_t N = 1) const {
    assert(size() >= N && "Dropping more elements than exist");
    return slice(0, size() - N);
  }

  /// Return a copy of *this with only the first \p N elements.
  ArrayRef<T> take_front(size_t N = 1) const {
    if (N >= size()) return *this;
    return drop_back(size() - N);
  }

  /// Return a copy of *this with only the last \p N elements.
  ArrayRef<T> take_back(size_t N = 1) const {
    if (N >= size()) return *this;
    return drop_front(size() - N);
  }

  /// @}
  /// @name Operator Overloads
  /// @{
  const T &operator[](size_t Index) const {
    assert(Index < Length && "Invalid index!");
    return Data[Index];
  }

  /// Disallow accidental assignment from a temporary.
  ///
  /// The declaration here is extra complicated so that "arrayRef = {}"
  /// continues to select the move assignment operator.
  template <typename U>
  std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &operator=(
      U &&Temporary) = delete;

  /// Disallow accidental assignment from a temporary.
  ///
  /// The declaration here is extra complicated so that "arrayRef = {}"
  /// continues to select the move assignment operator.
  template <typename U>
  std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &operator=(
      std::initializer_list<U>) = delete;

  /// @}
  /// @name Expensive Operations
  /// @{
  std::vector<T> vec() const { return std::vector<T>(Data, Data + Length); }

  /// @}
  /// @name Conversion operators
  /// @{
  operator std::vector<T>() const {
    return std::vector<T>(Data, Data + Length);
  }

  /// @}
};

/// @name ArrayRef Convenience constructors
/// @{

/// Construct an ArrayRef from a single element.
template <typename T>
ArrayRef<T> makeArrayRef(const T &OneElt) {
  return OneElt;
}

/// Construct an ArrayRef from a pointer and length.
template <typename T>
ArrayRef<T> makeArrayRef(const T *data, size_t length) {
  return ArrayRef<T>(data, length);
}

/// Construct an ArrayRef from a range.
template <typename T>
ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
  return ArrayRef<T>(begin, end);
}

/// Construct an ArrayRef from a SmallVector.
template <typename T>
ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
  return Vec;
}

/// Construct an ArrayRef from a SmallVector.
template <typename T, unsigned N>
ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
  return Vec;
}

/// Construct an ArrayRef from a std::vector.
template <typename T>
ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
  return Vec;
}

/// Construct an ArrayRef from a std::array.
template <typename T, std::size_t N>
ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) {
  return Arr;
}

/// Construct an ArrayRef from an ArrayRef (no-op) (const)
template <typename T>
ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) {
  return Vec;
}

/// Construct an ArrayRef from an ArrayRef (no-op)
template <typename T>
ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) {
  return Vec;
}

/// Construct an ArrayRef from a C array.
template <typename T, size_t N>
ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
  return ArrayRef<T>(Arr);
}

/// @}
/// @name ArrayRef Comparison Operators
/// @{

template <typename T>
inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
  return LHS.equals(RHS);
}

template <typename T>
inline bool operator==(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) {
  return ArrayRef<T>(LHS).equals(RHS);
}

template <typename T>
inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
  return !(LHS == RHS);
}

template <typename T>
inline bool operator!=(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) {
  return !(LHS == RHS);
}

}  // end namespace paddle

#endif  // PADDLE_UTILS_ARRAY_REF_H_