math_function.h 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <cmath>
#include <memory>
#include <vector>

#include "paddle/fluid/framework/operator.h"
21
#include "paddle/phi/backends/all_context.h"
22
#include "paddle/phi/core/dense_tensor.h"
23
#include "paddle/phi/core/enforce.h"
24
#include "paddle/phi/core/utils/data_type.h"
25
#include "paddle/phi/kernels/funcs/eigen/common.h"
26

27
namespace phi {
28 29
namespace funcs {

30 31 32
template <typename T>
void BatchTranspose(T* output, const T* input, int batch, int m, int n);

33 34 35 36
template <typename DeviceContext, typename T>
struct TransposeNormal {
  // for dims >= 7 situation
  void operator()(const DeviceContext& context,
37 38
                  const phi::DenseTensor& in,
                  phi::DenseTensor* out,
39 40 41 42 43 44
                  const std::vector<int>& axis);
};

template <typename DeviceContext, typename T, int Rank>
struct Transpose {
  void operator()(const DeviceContext& context,
45 46
                  const phi::DenseTensor& in,
                  phi::DenseTensor* out,
47 48 49 50 51 52
                  const std::vector<int>& axis);
};

template <typename DeviceContext, typename T>
struct SetConstant {
  void operator()(const DeviceContext& context,
53
                  phi::DenseTensor* tensor,
54 55 56
                  T num);
};

57 58
#ifdef PADDLE_WITH_XPU
template <typename T>
59 60
struct SetConstant<phi::XPUContext, T> {
  void operator()(const phi::XPUContext& context,
61
                  phi::DenseTensor* tensor,
62 63 64 65
                  T num);
};
#endif

66
template <typename Place>
67
void set_constant_with_place(const phi::DeviceContext& context,
68
                             phi::DenseTensor* tensor,
69 70
                             float value);

71
void set_constant(const phi::DeviceContext& context,
72
                  phi::DenseTensor* tensor,
73 74 75 76 77
                  float value);

template <typename DeviceContext, typename T>
struct RowwiseAdd {
  void operator()(const DeviceContext& context,
78 79 80
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& vec,
                  phi::DenseTensor* output);
81 82 83 84 85
};

template <typename DeviceContext, typename T>
struct ColwiseSum {
  void operator()(const DeviceContext& context,
86 87
                  const phi::DenseTensor& input,
                  phi::DenseTensor* vec);
88 89 90 91 92
};

template <typename DeviceContext, typename T>
struct RowwiseSum {
  void operator()(const DeviceContext& context,
93 94
                  const phi::DenseTensor& input,
                  phi::DenseTensor* vec);
95 96 97 98 99
};

template <typename DeviceContext, typename T>
struct RowwiseMean {
  void operator()(const DeviceContext& context,
100 101
                  const phi::DenseTensor& input,
                  phi::DenseTensor* vec);
102 103 104 105 106
};

#ifdef PADDLE_WITH_XPU
template <typename U>
struct TensorSetConstantXPU {
107
  TensorSetConstantXPU(phi::DenseTensor* tensor, U value, phi::Place place)
108 109 110 111 112 113 114
      : tensor_(tensor), value_(value), place_(place) {}
  template <typename T>
  void apply() const {
    auto* begin = tensor_->mutable_data<T>(place_);
    int numel = tensor_->numel();
    std::unique_ptr<T[]> data_cpu(new T[numel]);
    std::fill(data_cpu.get(), data_cpu.get() + numel, static_cast<T>(value_));
115 116 117 118 119
    memory_utils::Copy(place_,
                       begin,
                       phi::CPUPlace(),
                       static_cast<void*>(data_cpu.get()),
                       numel * sizeof(T));
120
  }
121
  phi::DenseTensor* tensor_;
122
  U value_;
123
  phi::Place place_;
124 125 126
};
#endif

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
template <typename Context, typename T>
inline void TransCompute(const int dim,
                         const Context& dev_ctx,
                         const DenseTensor& in,
                         DenseTensor* out,
                         const std::vector<int>& axis) {
  switch (dim) {
    case 1:
      Transpose<Context, T, 1> trans1;
      trans1(dev_ctx, in, out, axis);
      break;
    case 2:
      Transpose<Context, T, 2> trans2;
      trans2(dev_ctx, in, out, axis);
      break;
    case 3:
      Transpose<Context, T, 3> trans3;
      trans3(dev_ctx, in, out, axis);
      break;
    case 4:
      Transpose<Context, T, 4> trans4;
      trans4(dev_ctx, in, out, axis);
      break;
    case 5:
      Transpose<Context, T, 5> trans5;
      trans5(dev_ctx, in, out, axis);
      break;
    case 6:
      Transpose<Context, T, 6> trans6;
      trans6(dev_ctx, in, out, axis);
      break;
    default:
      // for dim >= 7 situation
      TransposeNormal<Context, T> trans_normal;
      trans_normal(dev_ctx, in, out, axis);
  }
}

165
}  // namespace funcs
166
}  // namespace phi