repeat_interleave_grad_kernel.cc 4.5 KB
Newer Older
S
seemingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/repeat_interleave_grad_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/utils/data_type.h"
#include "paddle/phi/kernels/cpu/index_select_impl.h"
#include "paddle/phi/kernels/funcs/repeat_tensor2index_tensor.h"

namespace phi {

template <typename T, typename Context>
void RepeatInterleaveWithTensorIndexGradKernel(
    const Context& ctx,
    const DenseTensor& x,
    const DenseTensor& repeats_tensor,
    const DenseTensor& out_grad,
    int dim,
    DenseTensor* x_grad) {
  auto input_dim = x_grad->dims();
  if (dim < 0) {
    dim += input_dim.size();
  }

  DenseTensor index;
  PADDLE_ENFORCE_EQ(repeats_tensor.dims()[0] == x_grad->dims()[dim],
                    true,
                    phi::errors::InvalidArgument(
                        "The length of Input(RepeatsTensor) must be the "
                        "same as length of Input(X) in axis. "
                        "But received: [%s], required: [%d].",
                        repeats_tensor.dims()[0],
                        x_grad->dims()[dim]));

  const auto& index_type =
      paddle::framework::TransToProtoVarType(repeats_tensor.dtype());

  bool index_type_match =
      index_type == paddle::framework::proto::VarType::INT32 ||
      index_type == paddle::framework::proto::VarType::INT64;
  PADDLE_ENFORCE_EQ(index_type_match,
                    true,
                    phi::errors::InvalidArgument(
                        "Input(Repeats) holds the wrong type, it holds %s, but "
                        "desires to be %s or %s",
                        paddle::framework::DataTypeToString(index_type),
                        paddle::framework::DataTypeToString(
                            paddle::framework::proto::VarType::INT32),
                        paddle::framework::DataTypeToString(
                            paddle::framework::proto::VarType::INT64)));

65
  phi::DeviceContextPool::Instance().Get(repeats_tensor.place());
S
seemingwang 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
  if (index_type == paddle::framework::proto::VarType::INT32) {
    phi::funcs::RepeatsTensor2IndexTensor<Context, int>(
        ctx, repeats_tensor, &index);
    IndexSelectGradInner<Context, T, int>(ctx, out_grad, index, x_grad, dim);
  } else if (index_type == paddle::framework::proto::VarType::INT64) {
    phi::funcs::RepeatsTensor2IndexTensor<Context, int64_t>(
        ctx, repeats_tensor, &index);
    IndexSelectGradInner<Context, T, int64_t>(
        ctx, out_grad, index, x_grad, dim);
  }
}

template <typename T, typename Context>
void RepeatInterleaveGradKernel(const Context& ctx,
                                const DenseTensor& x,
                                const DenseTensor& out_grad,
                                int repeats,
                                int dim,
                                DenseTensor* x_grad) {
  auto input_dim = x_grad->dims();
  if (dim < 0) {
    dim += input_dim.size();
  }

  DenseTensor index;
  int64_t index_size = x_grad->dims()[dim] * repeats;
  std::vector<int> index_vec(index_size);
  for (int i = 0; i < x_grad->dims()[dim]; i++) {
    std::fill_n(index_vec.begin() + i * repeats, repeats, i);
  }
  index.Resize(phi::make_ddim({index_size}));
97
  phi::TensorFromVector<int>(index_vec, ctx, &index);
S
seemingwang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  const DenseTensor index_copy = index;
  IndexSelectGradInner<Context, T, int>(ctx, out_grad, index_copy, x_grad, dim);
}
}  // namespace phi

PD_REGISTER_KERNEL(repeat_interleave_with_tensor_index_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::RepeatInterleaveWithTensorIndexGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}

PD_REGISTER_KERNEL(repeat_interleave_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::RepeatInterleaveGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}