im2sequence_op.cc 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/im2sequence_op.h"
16
#include <string>
17
#include <vector>
G
gongweibao 已提交
18 19 20 21

namespace paddle {
namespace operators {

22
class Im2SequenceOp : public framework::OperatorWithKernel {
G
gongweibao 已提交
23 24 25 26 27
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
G
gongweibao 已提交
28
    PADDLE_ENFORCE(ctx->HasInput("X"),
29
                   "Input(X) of Im2SequenceOp should not be null.");
G
gongweibao 已提交
30
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
31
                   "Output(Out) of Im2SequenceOp op should not be null.");
G
gongweibao 已提交
32
    auto in_dim = ctx->GetInputDim("X");
33

G
gongweibao 已提交
34
    PADDLE_ENFORCE_EQ(in_dim.size(), 4,
W
wanghaoshuang 已提交
35
                      "Input(X) format must be 4D tensor, eg., NCHW.");
W
wanghaoshuang 已提交
36
    int img_channels = in_dim[1];
G
gongweibao 已提交
37

38 39 40 41
    auto kernels = ctx->Attrs().Get<std::vector<int>>("kernels");
    auto strides = ctx->Attrs().Get<std::vector<int>>("strides");
    auto paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

W
whs 已提交
42 43
    ctx->SetOutputDim("Out",
                      {in_dim[0], img_channels * kernels[0] * kernels[1]});
G
gongweibao 已提交
44 45 46
  }
};

47
class Im2SequenceOpMaker : public framework::OpProtoAndCheckerMaker {
G
gongweibao 已提交
48
 public:
Y
Yu Yang 已提交
49
  void Make() override {
W
wanghaoshuang 已提交
50
    AddInput("X",
W
wanghaoshuang 已提交
51
             "(Tensor) The input tensor has NCHW format."
W
wanghaoshuang 已提交
52 53 54 55
             "N: batch size"
             "C: channels"
             "H: height"
             "W: width");
56 57 58 59
    AddInput("Y",
             "(Tensor) The input tensor of image real size(H, W)."
             "2-D with shape [batchsize, 2]")
        .AsDispensable();
W
wanghaoshuang 已提交
60
    AddOutput("Out", "(LodTensor) The output data of im2sequence op,");
W
wanghaoshuang 已提交
61 62
    AddAttr<std::vector<int>>("kernels",
                              "(vector<int>), the "
W
wanghaoshuang 已提交
63 64 65 66 67
                              "kernels(kernel_height, kernel_width)");
    AddAttr<std::vector<int>>("strides",
                              "(vector<int> default:{1, 1}), the "
                              "strides(h_stride, w_stride)")
        .SetDefault({1, 1});
W
wanghaoshuang 已提交
68 69 70 71
    AddAttr<std::vector<int>>("paddings",
                              "(vector<int> default:{0, 0, 0, 0}), the "
                              "paddings(up_pad, left_pad, down_pad, right_pad)")
        .SetDefault({0, 0, 0, 0});
72 73 74 75 76 77 78
    AddAttr<std::vector<int>>("out_stride",
                              "the attribute is valid only when input(Y)"
                              "is not NULL.this attribute represents the"
                              "scaling of the pic through the CNN"
                              "(vector<int> dedault:{1,1}),the out_stride"
                              " (out_stride_height, out_stride_width)")
        .SetDefault({1, 1});
G
gongweibao 已提交
79
    AddComment(R"DOC(
W
wanghaoshuang 已提交
80 81 82 83
This op uses kernels to scan images and converts these images to sequences.
After expanding, The number of time steps are output_height * output_width
and the dimension of each time step is kernel_height * kernel_width * channels,
in which:
W
wanghaoshuang 已提交
84 85

output_height =
W
wanghaoshuang 已提交
86
    1 + (padding_height + padding_down + img_height - kernel_height + stride_height - 1) /
W
wanghaoshuang 已提交
87 88
            stride_height;
output_width =
W
wanghaoshuang 已提交
89
    1 + (padding_left + padding+right + img_width - kernel_width + stride_width - 1) /
W
wanghaoshuang 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            stride_width;

This op can be used after convolution neural network, and before recurrent neural network.

Given:

x = [[[[ 6.  2.  1.]
       [ 8.  3.  5.]
       [ 0.  2.  6.]]

      [[ 2.  4.  4.]
       [ 6.  3.  0.]
       [ 6.  4.  7.]]]

     [[[ 6.  7.  1.]
       [ 5.  7.  9.]
       [ 2.  4.  8.]]

      [[ 1.  2.  1.]
       [ 1.  3.  5.]
       [ 9.  0.  8.]]]]
x.dims = {2, 2, 3, 3}

And:

W
wanghaoshuang 已提交
115 116 117
kernels = [2, 2]
strides = [1, 1]
paddings = [0, 0, 0, 0]
W
wanghaoshuang 已提交
118 119 120 121 122 123 124 125 126 127 128

Then:

output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
               [ 2.  1.  3.  5.  4.  4.  3.  0.]
               [ 8.  3.  0.  2.  6.  3.  6.  4.]
               [ 3.  5.  2.  6.  3.  0.  4.  7.]
               [ 6.  7.  5.  7.  1.  2.  1.  3.]
               [ 7.  1.  7.  9.  2.  1.  3.  5.]
               [ 5.  7.  2.  4.  1.  3.  9.  0.]
               [ 7.  9.  4.  8.  3.  5.  0.  8.]]
129
output.dims = {8, 8}
W
wanghaoshuang 已提交
130 131
output.lod = [[0, 4, 8]]

G
gongweibao 已提交
132 133 134 135
)DOC");
  }
};

136
class Im2SequenceGradOp : public framework::OperatorWithKernel {
G
gongweibao 已提交
137 138 139 140
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
G
add gpu  
gongweibao 已提交
141 142 143
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
G
gongweibao 已提交
144 145
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
G
add gpu  
gongweibao 已提交
146
  }
G
gongweibao 已提交
147 148 149 150 151 152
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
153
REGISTER_OPERATOR(im2sequence, ops::Im2SequenceOp, ops::Im2SequenceOpMaker,
154 155
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(im2sequence_grad, ops::Im2SequenceGradOp);
G
gongweibao 已提交
156
REGISTER_OP_CPU_KERNEL(
157 158
    im2sequence,
    ops::Im2SequenceKernel<paddle::platform::CPUDeviceContext, float>);
G
gongweibao 已提交
159
REGISTER_OP_CPU_KERNEL(
160 161
    im2sequence_grad,
    ops::Im2SequenceGradKernel<paddle::platform::CPUDeviceContext, float>);