partitioner.py 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid import framework as framework
from paddle.fluid import core, unique_name
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
23 24 25 26
from paddle.distributed.auto_parallel.operators.common import get_distributed_operator_impl_container
from paddle.distributed.auto_parallel.dist_context import DistributedContext, DistributedOperatorContext
from .dist_attribute import OperatorDistributedAttribute
from .process_group import new_process_group
27
from .utils import set_dist_op_desc_original_id
28
from .utils import print_program_with_dist_attr, is_forward_op, is_backward_op
J
JZ-LIANG 已提交
29
from .operators.common import BACKWARD_ONLY_DIST_OPS
30 31

__varname_not_in_block__ = ["lod_tensor_blocking_queue_0"]
32 33 34
__not_shape_var_type__ = [
    core.VarDesc.VarType.READER, core.VarDesc.VarType.STEP_SCOPES
]
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


class Partitioner(object):
    """
    warning:: Partitioner is experimental and subject to change.

    Partitioner convert a program into another program.
    Given a serial program which has been auto completed with shard annotation, the Partitioner 
    convert the serial program into a "distributed" program. The Partitioner will  modify the serial
    program in following two ways, which is also the major difference between serial and distributed program:
        1. partition op: replace a serial op into its corresponding dist op infered from the shard annotation
        2. partition var: if a var is sharded, modify the shape of var according to its shard annotation

    Partitioner is supposed to be call by the auto parallel framework, and not supposed to be directly called by user.
    """

51
    def __init__(self, dist_context, rank_id=0):
52 53
        """
        Args:
54
            dist_context (paddle.fluid.DistributedContext): used to access the distributed_attr of var & op, every Partitioner object could maintain its own DistributedContext member, and partition program base on that shard scenario.
55 56
            rank_id (int): global rank id to which the partitioned distributed program belong.
        """
57
        if not isinstance(dist_context, DistributedContext):
58
            raise TypeError(
59 60
                "dist_context be paddle.fluid.DistributedContext, got %s here" %
                type(dist_context))
61

62
        self._dist_context = dist_context
63 64 65 66
        self._rank_id = rank_id
        self._serial2dist_varname_mapping = {}
        self._dist_varname_suffix = ""

67 68 69
    def partition(self, serial_main_program, serial_startup_program,
                  params_grads):
        if not isinstance(serial_main_program, (Program)):
70
            raise TypeError(
71 72
                "main_program be paddle.fluid.framework.program, got %s here" %
                type(serial_main_program))
73 74

        # check if shard annotated serial program valid
75
        if not self._is_valid_annotated_program(serial_main_program):
76 77 78
            raise RuntimeError(
                "Not all vars or ops are annotated in main program !")

79 80
        # init distop helper
        dist_op_context = self._dist_context.dist_op_context
81 82
        dist_op_context.varname_mapping = self._serial2dist_varname_mapping
        dist_op_context.rank_id = self._rank_id
83

84 85 86 87 88 89
        # partition startup program
        if serial_startup_program == None:
            partitioned_startup_prog = None
        else:
            partitioned_startup_prog = self.partition_startup_program(
                serial_main_program, serial_startup_program)
90
        dist_op_context.dst_startup_program = partitioned_startup_prog
91

92
        # partition main program
93 94
        partitioned_main_prog, partitioned_params_grads = self.partition_main_program(
            serial_main_program, params_grads)
95

96
        return partitioned_main_prog, partitioned_startup_prog, partitioned_params_grads
97

98 99
    def partition_startup_program(self, serial_main_program,
                                  serial_startup_program):
100

101 102 103 104
        if not isinstance(serial_startup_program, (Program)):
            raise TypeError(
                "dist_context be paddle.fluid.framework.program, got %s here" %
                type(serial_startup_program))
105

106 107 108
        partitioned_startup_prog = fluid.Program()
        ref_block = serial_main_program.global_block()
        target_block = partitioned_startup_prog.global_block()
J
JZ-LIANG 已提交
109
        var2shape = {}
110
        temp_varname_map = {}
111

112 113
        # tensors
        for var in serial_startup_program.list_vars():
J
JZ-LIANG 已提交
114 115 116 117 118 119
            assert var.persistable
            new_name = var.name + self._dist_varname_suffix
            temp_varname_map[var.name] = new_name
            target_shape = _partition_var(self._dist_context, ref_block,
                                          target_block, var.name, new_name)
            var2shape[new_name] = target_shape
120 121 122 123 124 125 126 127 128 129

        # ops
        for op in serial_startup_program.global_block().ops:
            # TODO if var not belong to this rank, should be filtered
            output_vars = op.desc.output_arg_names()
            assert len(
                output_vars
            ) == 1, "initializer should output only ONE variable, but got [{}]".format(
                str(op.desc))
            assert temp_varname_map[output_vars[
J
JZ-LIANG 已提交
130
                0]] in var2shape, "try to initialize [{}] which is not a persistable var".format(
131 132 133 134 135 136
                    output_vars[0])
            new_op_desc = target_block.desc.append_op()
            new_op_desc.copy_from(op.desc)
            new_op_desc._rename_output(output_vars[0],
                                       temp_varname_map[output_vars[0]])
            new_op_desc._set_attr("shape",
J
JZ-LIANG 已提交
137
                                  var2shape[temp_varname_map[output_vars[0]]])
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            target_block._sync_with_cpp()

            # set distribute atrribute
            new_op = target_block.ops[-1]
            assert new_op.type == new_op_desc.type()
            assert new_op.desc == new_op_desc
            output_var = target_block.var(output_vars[0])
            output_var_attr = self._dist_context.get_tensor_dist_attr_for_program(
                output_var)
            op_attr = OperatorDistributedAttribute()
            op_attr.process_mesh = output_var_attr.process_mesh
            op_attr.set_output_dims_mapping(output_var.name,
                                            output_var_attr.dims_mapping)
            op_attr.set_input_dims_mapping(output_var.name,
                                           output_var_attr.dims_mapping)
            self._dist_context.set_op_dist_attr_for_program(new_op, op_attr)

        return partitioned_startup_prog

    def partition_main_program(self, serial_main_program, params_and_grads):
158 159 160 161 162 163
        """
        1. partition variables
        2. replace local op with corresponding dist op
        """

        partitioned_main_prog = fluid.Program()
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        dist_op_context = self._dist_context.dist_op_context
        dist_op_context.dst_main_program = partitioned_main_prog

        for idx in range(self._dist_context.block_state.nblock):
            ref_block = serial_main_program.blocks[idx]

            if idx == 0:
                target_block = partitioned_main_prog.blocks[0]
            else:
                target_block = partitioned_main_prog._create_block(
                    parent_idx=ref_block.parent_idx)
                assert ref_block.idx == target_block.idx
                target_block._set_forward_block_idx(ref_block.forward_block_idx)
            dist_op_context.work_block = target_block
            self.partition_block(ref_block, target_block)

        partitioned_main_prog.current_block_idx = 0

        partitioned_params_and_grads = []
        for p, g in params_and_grads:
            assert p.name in self._serial2dist_varname_mapping
            dist_p = self._get_dist_var_by_serial_var(p, partitioned_main_prog)
            if g is None:
                dist_g = None
            else:
                assert g.name in self._serial2dist_varname_mapping
                dist_g = self._get_dist_var_by_serial_var(g,
                                                          partitioned_main_prog)
            partitioned_params_and_grads.append((dist_p, dist_g))

        return partitioned_main_prog, partitioned_params_and_grads

    def partition_block(self, ref_block, target_block):

        dist_op_context = self._dist_context.dist_op_context
        serial_ops = ref_block.ops
200

201 202 203 204 205 206
        # init mapping
        forward_op_id2forward_op = {}
        for idx in range(len(serial_ops)):
            if is_forward_op(serial_ops[idx]):
                forward_op_id2forward_op[serial_ops[idx].desc.id(
                )] = serial_ops[idx]
207

208
        # partiiton
209 210 211 212 213 214
        for op in serial_ops:

            # partititon input variables
            for serial_input_varname in op.desc.input_arg_names():
                if serial_input_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_input_varname + self._dist_varname_suffix
215 216 217 218
                    if ref_block.has_var(serial_input_varname):
                        _partition_var(self._dist_context, ref_block,
                                       target_block, serial_input_varname,
                                       new_varname)
219 220 221 222 223 224 225 226 227 228
                    else:
                        assert serial_input_varname in __varname_not_in_block__

                    self._serial2dist_varname_mapping[
                        serial_input_varname] = new_varname

            # partition output vars
            for serial_output_varname in op.desc.output_arg_names():
                if serial_output_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_output_varname + self._dist_varname_suffix
229
                    _partition_var(self._dist_context, ref_block, target_block,
230 231 232 233 234
                                   serial_output_varname, new_varname)
                    self._serial2dist_varname_mapping[
                        serial_output_varname] = new_varname

            # partition op
235 236
            op_dist_attr = self._dist_context.get_op_dist_attr_for_program(op)
            if is_forward_op(op) or op_dist_attr.is_recompute:
237 238 239 240 241 242 243 244 245 246 247 248
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_forward_impl = _get_dist_op_forward_implement(
                    op, self._dist_context)
                dist_op_forward_impl.forward(self._dist_context, **kinputs,
                                             **koutputs)

            elif is_backward_op(op):
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_backward_impl = _get_dist_op_backward_implement(
                    op, self._dist_context, forward_op_id2forward_op)
                dist_op_backward_impl.backward(self._dist_context, **kinputs,
                                               **koutputs)
249
            else:
250 251 252 253
                raise NotImplementedError(
                    "partitioner only support forward op and backward op, but got {}".
                    format(str(op)))

254 255 256 257 258 259
    def _is_valid_annotated_program(self, program):

        # TODO (ZJ-LIANG) should check all block
        ops = program.global_block().ops
        vars_ = program.list_vars()
        op_dist_attrs = [
260
            self._dist_context.get_op_dist_attr_for_program(op) for op in ops
261 262
        ]
        var_dist_attrs = [
263
            self._dist_context.get_tensor_dist_attr_for_program(var)
264
            for var in vars_ if (var.type not in __not_shape_var_type__)
265 266 267 268 269 270 271 272 273
        ]

        all_ops_annotated = all(dist_attr is not None
                                for dist_attr in op_dist_attrs)
        all_vars_annotated = all(dist_attr is not None
                                 for dist_attr in var_dist_attrs)

        return all_ops_annotated and all_vars_annotated

274 275 276 277 278 279 280 281
    def _get_dist_var_by_serial_var(self, serial_var, partitioned_main_prog):

        block_idx = serial_var.block.idx
        target_block = partitioned_main_prog.blocks[block_idx]
        dist_var_name = self._serial2dist_varname_mapping[serial_var.name]
        assert target_block.has_var(dist_var_name)
        return target_block.var(dist_var_name)

282 283 284 285

def _get_dist_shape(var, dist_attr):

    var_shape = var.shape
286 287
    mapping = dist_attr.dims_mapping
    mesh = dist_attr.process_mesh.topology
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
        var_shape, mapping)
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            assert var_shape[idx] % mesh[mapping[
                idx]] == 0, "un-event partition: var_shape[idx]=[{}], mesh[{}]".format(
                    var_shape[idx], mesh[mapping[idx]])
            new_shape.append(var_shape[idx] // mesh[mapping[idx]])

    return new_shape


305
def _partition_parameter(dist_context, src_var, dst_block, dst_varname,
306 307
                         dst_shape):
    # NOTE hack to copied Parameter
308
    # not initialized parameter, need to initialize it
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    copied_kwargs = {}
    copied_kwargs['trainable'] = src_var.trainable
    copied_kwargs['optimize_attr'] = src_var.optimize_attr
    copied_kwargs['regularizer'] = src_var.regularizer
    copied_kwargs['do_model_average'] = src_var.do_model_average
    copied_kwargs['need_clip'] = src_var.need_clip

    param = Parameter(
        block=dst_block,
        type=src_var.type,
        name=dst_varname,
        shape=dst_shape,
        dtype=src_var.dtype,
        lod_level=src_var.lod_level,
        error_clip=src_var.error_clip,
        stop_gradient=src_var.stop_gradient,
        is_data=src_var.is_data,
        belong_to_optimizer=src_var.belong_to_optimizer,
        **copied_kwargs)

    # set dist attr uid
    # distributed_attr_uid = src_var.desc.get_distributed_attr_uid()
    # param.desc.set_distributed_attr_uid(distributed_attr_uid)
    dist_attr = copy.deepcopy(
333
        dist_context.get_tensor_dist_attr_for_program(src_var))
334
    assert dist_attr is not None
335
    dist_context.set_tensor_dist_attr_for_program(param, dist_attr)
336 337


338 339
def _partition_intermediate_var(dist_context, src_var, dst_block, dst_varname,
                                dst_shape):
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    var = dst_block.create_var(
        type=src_var.type,
        name=dst_varname,
        shape=dst_shape,
        dtype=src_var.dtype,
        lod_level=src_var.lod_level,
        persistable=src_var.persistable,
        error_clip=src_var.error_clip,
        stop_gradient=src_var.stop_gradient,
        is_data=src_var.is_data,
        belong_to_optimizer=src_var.belong_to_optimizer)

    # set dist attr uid
    # distributed_attr_uid = src_var.desc.get_distributed_attr_uid()
    # var.desc.set_distributed_attr_uid(distributed_attr_uid)
    dist_attr = copy.deepcopy(
356
        dist_context.get_tensor_dist_attr_for_program(src_var))
357
    assert dist_attr is not None
358
    dist_context.set_tensor_dist_attr_for_program(var, dist_attr)
359 360


361
def _partition_var(dist_context, src_block, dst_block, src_varname,
362 363 364 365 366 367
                   dst_varname):
    """
    partition include: split + replicate
    """
    src_var = src_block.var(src_varname)

368
    if src_var.type in __not_shape_var_type__:
369 370 371 372 373
        dst_block.create_var(
            type=src_var.type,
            name=dst_varname,
            persistable=True,
            stop_gradient=True)
J
JZ-LIANG 已提交
374
        target_shape = None
375
    else:
376
        dist_attr = dist_context.get_tensor_dist_attr_for_program(src_var)
377 378 379
        target_shape = _get_dist_shape(src_var, dist_attr)

        if isinstance(src_var, Parameter):
380 381
            _partition_parameter(dist_context, src_var, dst_block, dst_varname,
                                 target_shape)
382
        else:
383 384
            _partition_intermediate_var(dist_context, src_var, dst_block,
                                        dst_varname, target_shape)
J
JZ-LIANG 已提交
385
    return target_shape
386 387


388 389 390
def _get_dist_op_backward_implement(backward_op, dist_context,
                                    forward_op_id2forward_op):
    dist_op_context = dist_context.dist_op_context
391 392 393
    if backward_op.desc.id() in dist_op_context.grad_op_id_to_op_id:
        forward_op_id = dist_op_context.grad_op_id_to_op_id[backward_op.desc.id(
        )]
394 395 396
        forward_op = forward_op_id2forward_op[forward_op_id]
        forward_op_dist_attr = dist_context.get_op_dist_attr_for_program(
            forward_op)
397 398 399 400 401
        dist_op_impl_container = get_distributed_operator_impl_container(
            forward_op_dist_attr.impl_type)
        dist_op_impl = dist_op_impl_container.get_impl(
            forward_op_dist_attr.impl_idx)
        return dist_op_impl
402

403
    # # NOTE trick for dist ops that only have backward implement
J
JZ-LIANG 已提交
404 405
    if backward_op.type in BACKWARD_ONLY_DIST_OPS:
        op_dist_attr = dist_context.get_op_dist_attr_for_program(backward_op)
406 407
        assert op_dist_attr.impl_idx >= 0
        dist_op_impl = get_distributed_operator_impl_container(
Z
zhaoyingli 已提交
408
            op_dist_attr.impl_type).get_impl(op_dist_attr.impl_idx)
409
        return dist_op_impl
J
JZ-LIANG 已提交
410 411 412

    dist_op = get_distributed_operator_impl_container("default")
    return dist_op.get_impl(0)
413 414 415 416


def _get_dist_op_forward_implement(forward_op, dist_context):
    dist_attr = dist_context.get_op_dist_attr_for_program(forward_op)
417 418 419 420
    dist_op_impl_container = get_distributed_operator_impl_container(
        dist_attr.impl_type)
    dist_op_impl = dist_op_impl_container.get_impl(dist_attr.impl_idx)
    return dist_op_impl